Do you want to publish a course? Click here

A Holographic Superfluid Symphony

210   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the hydrodynamic excitations of backreacted holographic superfluids by computing the full set of quasinormal modes (QNMs) at finite momentum and matching them to the existing hydrodynamic theory of superfluids. Additionally, we analyze the behavior of the low-energy excitations in real frequency and complex momentum, going beyond the standard QNM picture. Finally, we carry out a novel type of study of the model by computing the support of the hydrodynamic modes across the phase diagram. We achieve this by determining the support of the corresponding QNMs on the different operators in the dual theory, both in complex frequency and complex momentum space. From the support, we are able to reconstruct the hydrodynamic dispersion relations using the hydrodynamic constitutive relations. Our analysis rules out a role-reversal phenomenon between first and second sound in this model, contrary to results obtained in a weakly coupled field theory framework.



rate research

Read More

A holographic realization for ferromagnetic systems has been constructed. Owing to the holographic dictionary proposed on the basis of this realization, we obtained relevant thermodynamic quantities such as magnetization, magnetic susceptibility, and free energy. This holographic model reproduces the behavior of the mean field theory near the critical temperature. At low temperatures, the results automatically incorporate the contributions from spin wave excitations and conduction electrons.
In the probe limit, we numerically construct a holographic p-wave superfluid model in the 4D and 5D AdS black holes coupled to a Maxwell-complex vector field. We find that, for the condensate with the fixed superfluid velocity, the results are similar to the s-wave cases in both 4D and 5D spacetimes. In particular, The Cave of Winds and the phase transition always being the second order take place in the 5D case. Moreover, we find the second-first order translating point $frac{S_y}{mu}$ increases with the mass squared. Furthermore, for the supercurrent with the fixed temperature, the results agree with the GL prediction near the critical temperature. In addition, this complex vector superfluid model is still a generalization of the SU(2) superfluid model, and also provides a holographic realization of the $He_3$ superfluid system.
We present a suite of holographic quantum algorithms for efficient ground-state preparation and dynamical evolution of correlated spin-systems, which require far-fewer qubits than the number of spins being simulated. The algorithms exploit the equivalence between matrix-product states (MPS) and quantum channels, along with partial measurement and qubit re-use, in order to simulate a $D$-dimensional spin system using only a ($D$-1)-dimensional subset of qubits along with an ancillary qubit register whose size scales logarithmically in the amount of entanglement present in the simulated state. Ground states can either be directly prepared from a known MPS representation, or obtained via a holographic variational quantum eigensolver (holoVQE). Dynamics of MPS under local Hamiltonians for time $t$ can also be simulated with an additional (multiplicative) ${rm poly}(t)$ overhead in qubit resources. These techniques open the door to efficient quantum simulation of MPS with exponentially large bond-dimension, including ground-states of 2D and 3D systems, or thermalizing dynamics with rapid entanglement growth. As a demonstration of the potential resource savings, we implement a holoVQE simulation of the antiferromagnetic Heisenberg chain on a trapped-ion quantum computer, achieving within $10(3)%$ of the exact ground-state energy of an infinite chain using only a pair of qubits.
We investigate a holographic model of superfluid flows with an external repulsive potential. When the strength of the potential is sufficiently weak, we analytically construct two steady superfluid flow solutions. As the strength of the potential is increased, the two solutions merge into a single critical solution at a critical strength, and then disappear above the critical value, as predicted by a saddle-node bifurcation theory. We also analyze the spectral function of fluctuations around the solutions under a certain decoupling approximation.
We study the quench dynamics of a topological $p$-wave superfluid with two competing order parameters, $Delta_pm(t)$. When the system is prepared in the $p+ip$ ground state and the interaction strength is quenched, only $Delta_+(t)$ is nonzero. However, we show that fluctuations in the initial conditions result in the growth of $Delta_-(t)$ and chaotic oscillations of both order parameters. We term this behavior phase III. In addition, there are two other types of late time dynamics -- phase I where both order parameters decay to zero and phase II where $Delta_+(t)$ asymptotes to a nonzero constant while $Delta_-(t)$ oscillates near zero. Although the model is nonintegrable, we are able to map out the exact phase boundaries in parameter space. Interestingly, we find phase III is unstable with respect to breaking the time reversal symmetry of the interaction. When one of the order parameters is favored in the Hamiltonian, the other one rapidly vanishes and the previously chaotic phase III is replaced by the Floquet topological phase III that is seen in the integrable chiral $p$-wave model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا