Do you want to publish a course? Click here

Boost-R: Gradient Boosted Trees for Recurrence Data

61   0   0.0 ( 0 )
 Added by Xiao Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recurrence data arise from multi-disciplinary domains spanning reliability, cyber security, healthcare, online retailing, etc. This paper investigates an additive-tree-based approach, known as Boost-R (Boosting for Recurrence Data), for recurrent event data with both static and dynamic features. Boost-R constructs an ensemble of gradient boosted additive trees to estimate the cumulative intensity function of the recurrent event process, where a new tree is added to the ensemble by minimizing the regularized L2 distance between the observed and predicted cumulative intensity. Unlike conventional regression trees, a time-dependent function is constructed by Boost-R on each tree leaf. The sum of these functions, from multiple trees, yields the ensemble estimator of the cumulative intensity. The divide-and-conquer nature of tree-based methods is appealing when hidden sub-populations exist within a heterogeneous population. The non-parametric nature of regression trees helps to avoid parametric assumptions on the complex interactions between event processes and features. Critical insights and advantages of Boost-R are investigated through comprehensive numerical examples. Datasets and computer code of Boost-R are made available on GitHub. To our best knowledge, Boost-R is the first gradient boosted additive-tree-based approach for modeling large-scale recurrent event data with both static and dynamic feature information.

rate research

Read More

Random forest and deep neural network are two schools of effective classification methods in machine learning. While the random forest is robust irrespective of the data domain, the deep neural network has advantages in handling high dimensional data. In view that a differentiable neural decision forest can be added to the neural network to fully exploit the benefits of both models, in our work, we further combine convolutional autoencoder with neural decision forest, where autoencoder has its advantages in finding the hidden representations of the input data. We develop a gradient boost module and embed it into the proposed convolutional autoencoder with neural decision forest to improve the performance. The idea of gradient boost is to learn and use the residual in the prediction. In addition, we design a structure to learn the parameters of the neural decision forest and gradient boost module at contiguous steps. The extensive experiments on several public datasets demonstrate that our proposed model achieves good efficiency and prediction performance compared with a series of baseline methods.
89 - Ji Feng , Yang Yu , Zhi-Hua Zhou 2018
Multi-layered representation is believed to be the key ingredient of deep neural networks especially in cognitive tasks like computer vision. While non-differentiable models such as gradient boosting decision trees (GBDTs) are the dominant methods for modeling discrete or tabular data, they are hard to incorporate with such representation learning ability. In this work, we propose the multi-layered GBDT forest (mGBDTs), with an explicit emphasis on exploring the ability to learn hierarchical representations by stacking several layers of regression GBDTs as its building block. The model can be jointly trained by a variant of target propagation across layers, without the need to derive back-propagation nor differentiability. Experiments and visualizations confirmed the effectiveness of the model in terms of performance and representation learning ability.
Gradient boosted decision trees (GBDTs) are widely used in machine learning, and the output of current GBDT implementations is a single variable. When there are multiple outputs, GBDT constructs multiple trees corresponding to the output variables. The correlations between variables are ignored by such a strategy causing redundancy of the learned tree structures. In this paper, we propose a general method to learn GBDT for multiple outputs, called GBDT-MO. Each leaf of GBDT-MO constructs predictions of all variables or a subset of automatically selected variables. This is achieved by considering the summation of objective gains over all output variables. Moreover, we extend histogram approximation into multiple output case to speed up the training process. Various experiments on synthetic and real-world datasets verify that GBDT-MO achieves outstanding performance in terms of both accuracy and training speed. Our codes are available on-line.
By chaining a sequence of differentiable invertible transformations, normalizing flows (NF) provide an expressive method of posterior approximation, exact density evaluation, and sampling. The trend in normalizing flow literature has been to devise deeper, more complex transformations to achieve greater flexibility. We propose an alternative: Gradient Boosted Normalizing Flows (GBNF) model a density by successively adding new NF components with gradient boosting. Under the boosting framework, each new NF component optimizes a sample weighted likelihood objective, resulting in new components that are fit to the residuals of the previously trained components. The GBNF formulation results in a mixture model structure, whose flexibility increases as more components are added. Moreover, GBNFs offer a wider, as opposed to strictly deeper, approach that improves existing NFs at the cost of additional training---not more complex transformations. We demonstrate the effectiveness of this technique for density estimation and, by coupling GBNF with a variational autoencoder, generative modeling of images. Our results show that GBNFs outperform their non-boosted analog, and, in some cases, produce better results with smaller, simpler flows.
Highly distributed training of Deep Neural Networks (DNNs) on future compute platforms (offering 100 of TeraOps/s of computational capacity) is expected to be severely communication constrained. To overcome this limitation, new gradient compression techniques are needed that are computationally friendly, applicable to a wide variety of layers seen in Deep Neural Networks and adaptable to variations in network architectures as well as their hyper-parameters. In this paper we introduce a novel technique - the Adaptive Residual Gradient Compression (AdaComp) scheme. AdaComp is based on localized selection of gradient residues and automatically tunes the compression rate depending on local activity. We show excellent results on a wide spectrum of state of the art Deep Learning models in multiple domains (vision, speech, language), datasets (MNIST, CIFAR10, ImageNet, BN50, Shakespeare), optimizers (SGD with momentum, Adam) and network parameters (number of learners, minibatch-size etc.). Exploiting both sparsity and quantization, we demonstrate end-to-end compression rates of ~200X for fully-connected and recurrent layers, and ~40X for convolutional layers, without any noticeable degradation in model accuracies.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا