No Arabic abstract
The aim of this work is to explore the potential of Surface Brightness Fluctuations (SBF) for studying composite stellar populations (CSP). To do so, we have computed the standard (mean) and SBF spectra with E-MILES stellar population synthesis code. We have created a set of models composed by different mass fractions of two single stellar populations (SSP), as a first approximation of a CSP scenario. With these models we present an ensemble of SBF colour-colour diagnostic diagrams that reveal different secondary populations depending on the bands used. For this work we focus on those colours capable of unveiling small fractions of metal-poor components in elliptical galaxies, which are dominated by old metal-rich stellar populations. We fit a set of synthetic models and a selection of nearby elliptical galaxies to our CSP models using both mean and SBF colours. We find that the results are highly improved and return small secondary components when mean and SBF values are applied simultaneously, instead of employing them separately or as a constraint. Finally, we explore the possibility of tracking chemical enrichment histories by including in the analysis a variety of SBF colours. For this purpose we present an example where, with two different SBF colour-colour diagrams, we untangle a small contribution of a young solar population and an old metal-poor component from an old solar principal population. The results we have found are promising, but limited by the available data. We highlight the urgent need for new, better and more consistent SBF observations.
Based on the Sloan Digital Sky Survey DR 7, we investigate the environment, morphology and stellar population of bulgeless low surface brightness (LSB) galaxies in a volume-limited sample with redshift ranging from 0.024 to 0.04 and $M_r$ $leq$ $-18.8$. The local density parameter $Sigma_5$ is used to trace their environments. We find that, for bulgeless galaxies, the surface brightness does not depend on the environment. The stellar populations are compared for bulgeless LSB galaxies in different environments and for bulgeless LSB galaxies with different morphologies. The stellar populations of LSB galaxies in low density regions are similar to those of LSB galaxies in high density regions. Irregular LSB galaxies have more young stars and are more metal-poor than regular LSB galaxies. These results suggest that the evolution of LSB galaxies may be driven by their dynamics including mergers rather than by their large scale environment.
We are using optical/IR surface brightness fluctuations (SBFs) to validate the latest stellar population synthesis models and to understand the stellar populations of ellipticals. Integrated light and spectra measure only the first moment of the stellar luminosity function (Sigma n_i * L_i). Since SBFs also depend on the second moment (Sigma n_i * L_i^2), they provide novel information, in particular about the reddest, most luminous RGB and AGB stars, which are the most difficult stars to model. SBFs can also provide useful new constraints on the age/metallicity of unresolved stellar populations in ellipticals. Finally, developing accurate stellar population models benefits several aspects of SBF distance measurements to galaxies.
Near-infrared (NIR) K images of a sample of five low surface brightness disc galaxies (LSBGs) were combined with optical data, with the aim of constraining their star formation histories. Both red and blue LSBGs were imaged to enable comparison of their stellar populations. For both types of galaxy strong colour gradients were found, consistent with mean stellar age gradients. Very low stellar metallicities were ruled out on the basis of metallicity-sensitive optical-NIR colours. These five galaxies suggest that red and blue LSBGs have very different star formation histories and represent two independent routes to low B band surface brightness. Blue LSBGs are well described by models with low, roughly constant star formation rates, whereas red LSBGs are better described by a `faded disc scenario.
We present an in-depth study of surface brightness fluctuations (SBFs) in low-luminosity stellar systems. Using the MIST models, we compute theoretical predictions for absolute SBF magnitudes in the LSST, HST ACS/WFC, and proposed Roman Space Telescope filter systems. We compare our calculations to observed SBF-color relations of systems that span a wide range of age and metallicity. Consistent with previous studies, we find that single-age population models show excellent agreement with observations of low-mass galaxies with $0.5 lesssim g - i lesssim 0.9$. For bluer galaxies, the observed relation is better fit by models with composite stellar populations. To study SBF recovery from low-luminosity systems, we perform detailed image simulations in which we inject fully populated model galaxies into deep ground-based images from real observations. Our simulations show that LSST will provide data of sufficient quality and depth to measure SBF magnitudes with precisions of ${sim}0.2$-0.5 mag in ultra-faint $left(mathrm{10^4 leq M_star/M_odot leq 10^5}right)$ and low-mass classical (M$_starleq10^7$ M$_odot$) dwarf galaxies out to ${sim}4$ Mpc and ${sim}25$ Mpc, respectively, within the first few years of its deep-wide-fast survey. Many significant practical challenges and systematic uncertainties remain, including an irreducible sampling scatter in the SBFs of ultra-faint dwarfs due to their undersampled stellar mass functions. We nonetheless conclude that SBFs in the new generation of wide-field imaging surveys have the potential to play a critical role in the efficient confirmation and characterization of dwarf galaxies in the nearby universe.
We investigate the formation and properties of low surface brightness galaxies (LSBGs) with $M_{*} > 10^{9.5} mathrm{M_{odot}}$ in the EAGLE hydrodynamical cosmological simulation. Galaxy surface brightness depends on a combination of stellar mass surface density and mass-to-light ratio ($M/L$), such that low surface brightness is strongly correlated with both galaxy angular momentum (low surface density) and low specific star formation rate (high $M/L$). This drives most of the other observed correlations between surface brightness and galaxy properties, such as the fact that most LSBGs have low metallicity. We find that LSBGs are more isolated than high surface brightness galaxies (HSBGs), in agreement with observations, but that this trend is driven entirely by the fact that LSBGs are unlikely to be close-in satellites. The majority of LSBGs are consistent with a formation scenario in which the galaxies with the highest angular momentum are those that formed most of their stars recently from a gas reservoir co-rotating with a high-spin dark matter halo. However, the most extended LSBG disks in EAGLE, which are comparable in size to observed giant LSBGs, are built up via mergers. These galaxies are found to inhabit dark matter halos with a higher spin in their inner regions ($<0.1r_{200c}$), even when excluding the effects of baryonic physics by considering matching halos from a dark matter only simulation with identical initial conditions.