Do you want to publish a course? Click here

Science with the TianQin Observatory: Preliminary Results on Stochastic Gravitational-Wave Background

31   0   0.0 ( 0 )
 Added by Yi-Ming Hu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, we study the prospect of detecting the stochastic gravitational-wave background with the TianQin observatory. We consider both astrophysical-origin and cosmological-origin sources, including stellar-mass binary black holes, binary neutron stars, Galactic white dwarves, inflation, first order phase transition, and cosmic defects. For the detector configurations, we considered TianQin, TianQin I+II and TianQin + LISA. We studied the detectability of stochastic gravitational-wave backgrounds with the assumed methods of both cross-correlation and null channel, and present the corresponding power-law integrated sensitivity curves. We introduce the definition of the joint foreground with a network of detectors. With the joint foreground, the number of resolved double white dwarves in the Galaxy will be increased by 5% $sim$ 22% compared with simple combination of individual detectors. The astrophysical background from the binary black holes and the binary neutron stars under the theoretical models are predicted to be detectable with signal-to-noise ratio of around 10 after five years operation. As for the cosmological sources, their models are highly uncertain, and we only roughly estimate the detection capability under certain cases.



rate research

Read More

We study the prospect of using TianQin to detect stellar-mass binary black holes (SBBHs). We estimate the expected detection number as well as the precision of parameter estimation on SBBH inspirals, using five different population models. We note TianQin can possibly detect a few SBBH inspirals with signal to noise ratios greater than 12; lowering the threshold and combining multiple detectors can both boost the detection number. The source parameters can be recovered with good precision for most events above the detection threshold. For example, the precision of the merger time most likely occurs near 1s, making it possible to guide the detection of the ground-based detectors, the precision of the eccentricity $e_0$ most likely occurs near $10^{-4}$, making it possible to distinguish the formation channels, and the precision of the mass parameter is better than $10^{-6}$ in general and most likely occurs near $10^{-7}$. We note, in particular, that for a typical merger event, the error volume is likely to be small enough to contain only the host galaxy, which could greatly help in the study of gravitational wave cosmology and relevant studies through the multimessenger observation.
We explore the prospects of detecting of Galactic double white dwarf (DWD) binaries with the space-based gravitational wave (GW) observatory TianQin. In this work, we analyze both a sample of currently known DWDs and a realistic synthetic population of DWDs to assess the number of guaranteed detections and the full capacity of the mission. We find that TianQin can detect 12 out of $sim100$ known DWDs; GW signals of these binaries can be modeled in detail ahead of the mission launch, and therefore they can be used as verification sources. Besides we estimate that TianQin has potential to detect as many as $10^4$ DWDs in the Milky Way. TianQin is expected to measure their orbital periods and amplitudes with accuracies of $sim10^{-7}$ and $sim0.2$, respectively, and to localize on the sky a large fraction (39%) of the detected population to better than 1 deg$^2$. We conclude that TianQin has the potential to significantly advance our knowledge on Galactic DWDs by increasing the sample up to 2 orders of magnitude, and will allow their multi-messenger studies in combination with electromagnetic telescopes. We also test the possibilities of different configurations of TianQin: (1) the same mission with a different orientation, (2) two perpendicular constellations combined into a network, and (3) the combination of the network with the ESA-led Laser Interferometer Space Antenna. We find that the network of detectors boosts the accuracy on the measurement of source parameters by 1-2 orders of magnitude, with the improvement on sky localization being the most significant.
Stochastic gravitational wave backgrounds, predicted in many models of the early universe and also generated by various astrophysical processes, are a powerful probe of the Universe. The spectral shape is key information to distinguish the origin of the background since different production mechanisms predict different shapes of the spectrum. In this paper, we investigate how precisely future gravitational wave detectors can determine the spectral shape using single and broken power-law templates. We consider the detector network of Advanced-LIGO, Advanced-Virgo and KAGRA and the space-based gravitational-wave detector DECIGO, and estimate the parameter space which could be explored by these detectors. We find that, when the spectrum changes its slope in the frequency range of the sensitivity, the broken power-law templates dramatically improve the $chi^2$ fit compared with the single power-law templates and help to measure the shape with a good precision.
We study the sensitivity of a pair of Einstein Telescopes (ET) (hypothetically located at the two sites currently under consideration for ET) to the anisotropies of the Stochastic Gravitational Wave Background (SGWB). We focus on the $ell =0,2,4$ multipoles of an expansion of the SGWB in spherical harmonics, since the sensitivity to other multipoles is suppressed due to the fact that this pair of detector operates in a regime for which the product between the observed frequency and the distance between the two sites is much smaller than one. In this regime, the interferometer overlap functions for the anisotropic signal acquire very simple analytic expressions. These expressions can also be applied to any other pairs of interferometers (each one of arbitrary opening angle between its two arms) operating in this regime. Once the measurements at the vertices of the two sites are optimally combined, the sensitivity to the multipoles of the SGWB depends only on the latitude of the two sites, on the difference of their longitude, but not on the orientation of their arms.
We present a set of tools to assess the capabilities of LISA to detect and reconstruct the spectral shape and amplitude of a stochastic gravitational wave background (SGWB). We first provide the LISA power-law sensitivity curve and binned power-law sensitivity curves, based on the latest updates on the LISA design. These curves are useful to make a qualitative assessment of the detection and reconstruction prospects of a SGWB. For a quantitative reconstruction of a SGWB with arbitrary power spectrum shape, we propose a novel data analysis technique: by means of an automatized adaptive procedure, we conveniently split the LISA sensitivity band into frequency bins, and fit the data inside each bin with a power law signal plus a model of the instrumental noise. We apply the procedure to SGWB signals with a variety of representative frequency profiles, and prove that LISA can reconstruct their spectral shape. Our procedure, implemented in the code SGWBinner, is suitable for homogeneous and isotropic SGWBs detectable at LISA, and it is also expected to work for other gravitational wave observatories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا