Do you want to publish a course? Click here

Double Similarity Distillation for Semantic Image Segmentation

166   0   0.0 ( 0 )
 Added by Yingchao Feng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The balance between high accuracy and high speed has always been a challenging task in semantic image segmentation. Compact segmentation networks are more widely used in the case of limited resources, while their performances are constrained. In this paper, motivated by the residual learning and global aggregation, we propose a simple yet general and effective knowledge distillation framework called double similarity distillation (DSD) to improve the classification accuracy of all existing compact networks by capturing the similarity knowledge in pixel and category dimensions, respectively. Specifically, we propose a pixel-wise similarity distillation (PSD) module that utilizes residual attention maps to capture more detailed spatial dependencies across multiple layers. Compared with exiting methods, the PSD module greatly reduces the amount of calculation and is easy to expand. Furthermore, considering the differences in characteristics between semantic segmentation task and other computer vision tasks, we propose a category-wise similarity distillation (CSD) module, which can help the compact segmentation network strengthen the global category correlation by constructing the correlation matrix. Combining these two modules, DSD framework has no extra parameters and only a minimal increase in FLOPs. Extensive experiments on four challenging datasets, including Cityscapes, CamVid, ADE20K, and Pascal VOC 2012, show that DSD outperforms current state-of-the-art methods, proving its effectiveness and generality. The code and models will be publicly available.



rate research

Read More

101 - Shuai Zhao , Boxi Wu , Wenqing Chu 2019
Most semantic segmentation models treat semantic segmentation as a pixel-wise classification task and use a pixel-wise classification error as their optimization criterions. However, the pixel-wise error ignores the strong dependencies among the pixels in an image, which limits the performance of the model. Several ways to incorporate the structure information of the objects have been investigated, eg, conditional random fields (CRF), image structure priors based methods, and generative adversarial network (GAN). Nevertheless, these methods usually require extra model branches or additional memories, and some of them show limited improvements. In contrast, we propose a simple yet effective structural similarity loss (SSL) to encode the structure information of the objects, which only requires a few additional computational resources in the training phase. Inspired by the widely-used structural similarity (SSIM) index in image quality assessment, we use the linear correlation between two images to quantify their structural similarity. And the goal of the proposed SSL is to pay more attention to the positions, whose associated predictions lead to a low degree of linear correlation between two corresponding regions in the ground truth map and the predicted map. Thus the model can achieve a strong structural similarity between the two maps through minimizing the SSL over the whole map. The experimental results demonstrate that our method can achieve substantial and consistent improvements in performance on the PASCAL VOC 2012 and Cityscapes datasets. The code will be released soon.
120 - Linqing Zhao , Jiwen Lu , Jie Zhou 2021
In this paper, we propose a similarity-aware fusion network (SAFNet) to adaptively fuse 2D images and 3D point clouds for 3D semantic segmentation. Existing fusion-based methods achieve remarkable performances by integrating information from multiple modalities. However, they heavily rely on the correspondence between 2D pixels and 3D points by projection and can only perform the information fusion in a fixed manner, and thus their performances cannot be easily migrated to a more realistic scenario where the collected data often lack strict pair-wise features for prediction. To address this, we employ a late fusion strategy where we first learn the geometric and contextual similarities between the input and back-projected (from 2D pixels) point clouds and utilize them to guide the fusion of two modalities to further exploit complementary information. Specifically, we employ a geometric similarity module (GSM) to directly compare the spatial coordinate distributions of pair-wise 3D neighborhoods, and a contextual similarity module (CSM) to aggregate and compare spatial contextual information of corresponding central points. The two proposed modules can effectively measure how much image features can help predictions, enabling the network to adaptively adjust the contributions of two modalities to the final prediction of each point. Experimental results on the ScanNetV2 benchmark demonstrate that SAFNet significantly outperforms existing state-of-the-art fusion-based approaches across various data integrity.
119 - Yi Lu , Yaran Chen , Dongbin Zhao 2020
Semantic segmentation with deep learning has achieved great progress in classifying the pixels in the image. However, the local location information is usually ignored in the high-level feature extraction by the deep learning, which is important for image semantic segmentation. To avoid this problem, we propose a graph model initialized by a fully convolutional network (FCN) named Graph-FCN for image semantic segmentation. Firstly, the image grid data is extended to graph structure data by a convolutional network, which transforms the semantic segmentation problem into a graph node classification problem. Then we apply graph convolutional network to solve this graph node classification problem. As far as we know, it is the first time that we apply the graph convolutional network in image semantic segmentation. Our method achieves competitive performance in mean intersection over union (mIOU) on the VOC dataset(about 1.34% improvement), compared to the original FCN model.
Practical autonomous driving systems face two crucial challenges: memory constraints and domain gap issues. In this paper, we present a novel approach to learn domain adaptive knowledge in models with limited memory, thus bestowing the model with the ability to deal with these issues in a comprehensive manner. We term this as Domain Adaptive Knowledge Distillation and address the same in the context of unsupervised domain-adaptive semantic segmentation by proposing a multi-level distillation strategy to effectively distil knowledge at different levels. Further, we introduce a novel cross entropy loss that leverages pseudo labels from the teacher. These pseudo teacher labels play a multifaceted role towards: (i) knowledge distillation from the teacher network to the student network & (ii) serving as a proxy for the ground truth for target domain images, where the problem is completely unsupervised. We introduce four paradigms for distilling domain adaptive knowledge and carry out extensive experiments and ablation studies on real-to-real as well as synthetic-to-real scenarios. Our experiments demonstrate the profound success of our proposed method.
Transformers have shown impressive performance in various natural language processing and computer vision tasks, due to the capability of modeling long-range dependencies. Recent progress has demonstrated to combine such transformers with CNN-based semantic image segmentation models is very promising. However, it is not well studied yet on how well a pure transformer based approach can achieve for image segmentation. In this work, we explore a novel framework for semantic image segmentation, which is encoder-decoder based Fully Transformer Networks (FTN). Specifically, we first propose a Pyramid Group Transformer (PGT) as the encoder for progressively learning hierarchical features, while reducing the computation complexity of the standard visual transformer(ViT). Then, we propose a Feature Pyramid Transformer (FPT) to fuse semantic-level and spatial-level information from multiple levels of the PGT encoder for semantic image segmentation. Surprisingly, this simple baseline can achieve new state-of-the-art results on multiple challenging semantic segmentation benchmarks, including PASCAL Context, ADE20K and COCO-Stuff. The source code will be released upon the publication of this work.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا