No Arabic abstract
Precise and high-resolution carbon dioxide (CO$_2$) emission data is of great importance of achieving the carbon neutrality around the world. Here we present for the first time the near-real-time Global Gridded Daily CO$_2$ Emission Datasets (called GRACED) from fossil fuel and cement production with a global spatial-resolution of 0.1$^circ$ by 0.1$^circ$ and a temporal-resolution of 1-day. Gridded fossil emissions are computed for different sectors based on the daily national CO$_2$ emissions from near real time dataset (Carbon Monitor), the spatial patterns of point source emission dataset Global Carbon Grid (GID), Emission Database for Global Atmospheric Research (EDGAR) and spatiotemporal patters of satellite nitrogen dioxide (NO$_2$) retrievals. Our study on the global CO$_2$ emissions responds to the growing and urgent need for high-quality, fine-grained near-real-time CO2 emissions estimates to support global emissions monitoring across various spatial scales. We show the spatial patterns of emission changes for power, industry, residential consumption, ground transportation, domestic and international aviation, and international shipping sectors between 2019 and 2020. This help us to give insights on the relative contributions of various sectors and provides a fast and fine-grained overview of where and when fossil CO$_2$ emissions have decreased and rebounded in response to emergencies (e.g. COVID-19) and other disturbances of human activities than any previously published dataset. As the world recovers from the pandemic and decarbonizes its energy systems, regular updates of this dataset will allow policymakers to more closely monitor the effectiveness of climate and energy policies and quickly adapt.
The diurnal cycle CO$_2$ emissions from fossil fuel combustion and cement production reflect seasonality, weather conditions, working days, and more recently the impact of the COVID-19 pandemic. Here, for the first time we provide a daily CO$_2$ emission dataset for the whole year of 2020 calculated from inventory and near-real-time activity data (called Carbon Monitor project: https://carbonmonitor.org). It was previously suggested from preliminary estimates that did not cover the entire year of 2020 that the pandemics may have caused more than 8% annual decline of global CO$_2$ emissions. Here we show from detailed estimates of the full year data that the global reduction was only 5.4% (-1,901 MtCO$_2$, ). This decrease is 5 times larger than the annual emission drop at the peak of the 2008 Global Financial Crisis. However, global CO$_2$ emissions gradually recovered towards 2019 levels from late April with global partial re-opening. More importantly, global CO$_2$ emissions even increased slightly by +0.9% in December 2020 compared with 2019, indicating the trends of rebound of global emissions. Later waves of COVID-19 infections in late 2020 and corresponding lockdowns have caused further CO$_2$ emissions reductions particularly in western countries, but to a much smaller extent than the declines in the first wave. That even substantial world-wide lockdowns of activity led to a one-time decline in global CO$_2$ emissions of only 5.4% in one year highlights the significant challenges for climate change mitigation that we face in the post-COVID era. These declines are significant, but will be quickly overtaken with new emissions unless the COVID-19 crisis is utilized as a break-point with our fossil-fuel trajectory, notably through policies that make the COVID-19 recovery an opportunity to green national energy and development plans.
The COVID-19 pandemic has disrupted human activities, leading to unprecedented decreases in both global energy demand and GHG emissions. Yet a little known that there is also a low carbon shift of the global energy system in 2020. Here, using the near-real-time data on energy-related GHG emissions from 30 countries (about 70% of global power generation), we show that the pandemic caused an unprecedented de-carbonization of global power system, representing by a dramatic decrease in the carbon intensity of power sector that reached a historical low of 414.9 tCO2eq/GWh in 2020. Moreover, the share of energy derived from renewable and low-carbon sources (nuclear, hydro-energy, wind, solar, geothermal, and biomass) exceeded that from coal and oil for the first time in history in May of 2020. The decrease in global net energy demand (-1.3% in the first half of 2020 relative to the average of the period in 2016-2019) masks a large down-regulation of fossil-fuel-burning power plants supply (-6.1%) coincident with a surge of low-carbon sources (+6.2%). Concomitant changes in the diurnal cycle of electricity demand also favored low-carbon generators, including a flattening of the morning ramp, a lower midday peak, and delays in both the morning and midday load peaks in most countries. However, emission intensities in the power sector have since rebounded in many countries, and a key question for climate mitigation is thus to what extent countries can achieve and maintain lower, pandemic-level carbon intensities of electricity as part of a green recovery.
Mastering semiconductor technology is essential to insert any country into the trends of the future, such as smart cities, internet of things, space exploration, etc. In this paper we present the growing annual revenue of the semiconductor industry in the last 20 years and comment on the importance of mastering semiconductor production technology and its implications for the development of a nation.
We study on topological properties of global supply chain network in terms of degree distribution, hierarchical structure, and degree-degree correlation in the global supply chain network. The global supply chain data is constructed by collecting various company data from the web site of Standard & Poors Capital IQ platform in 2018. The in- and out-degree distributions are characterized by a power law with in-degree exponent = 2.42 and out-degree exponent = 2.11. The clustering coefficient decays as power law with an exponent = 0.46. The nodal degree-degree correlation indicates the absence of assortativity. The Bow-tie structure of GWCC reveals that the OUT component is the largest and it consists 41.1% of total firms. The GSCC component comprises 16.4% of total firms. We observe that the firms in the upstream or downstream sides are mostly located a few steps away from the GSCC. Furthermore, we uncover the community structure of the network and characterize them according to their location and industry classification. We observe that the largest community consists of consumer discretionary sector mainly based in the US. These firms belong to the OUT component in the bow-tie structure of the global supply chain network. Finally, we confirm the validity for propositions S1 (short path length), S2 (power-law degree distribution), S3 (high clustering coefficient), S4 (fit-gets-richer growth mechanism), S5 (truncation of power-law degree distribution), and S7 (community structure with overlapping boundaries) in the global supply chain network.
The increasing integration of world economies, which organize in complex multilayer networks of interactions, is one of the critical factors for the global propagation of economic crises. We adopt the network science approach to quantify shock propagation on the global trade-investment multiplex network. To this aim, we propose a model that couples a Susceptible-Infected-Recovered epidemic spreading dynamics, describing how economic distress propagates between connected countries, with an internal contagion mechanism, describing the spreading of such economic distress within a given country. At the local level, we find that the interplay between trade and financial interactions influences the vulnerabilities of countries to shocks. At the large scale, we find a simple linear relation between the relative magnitude of a shock in a country and its global impact on the whole economic system, albeit the strength of internal contagion is country-dependent and the intercountry propagation dynamics is non-linear. Interestingly, this systemic impact can be predicted on the basis of intra-layer and inter-layer scale factors that we name network multipliers, that are independent of the magnitude of the initial shock. Our model sets-up a quantitative framework to stress-test the robustness of individual countries and of the world economy to propagating crashes.