Do you want to publish a course? Click here

Can we know about black hole thermodynamics through shadows?

114   0   0.0 ( 0 )
 Added by Yan-Gang Miao
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the relationship between shadow radius and microstructure for a general static spherically symmetric black hole and confirm their close connection. In this regard, we take the Reissner-Nordstrom (AdS) black hole as an example to do the concrete analysis. On the other hand, we study for the Kerr (AdS) black hole the relationship between its shadow and thermodynamics in the aspects of phase transition and microstructure. Our results for the Kerr (AdS) black hole show that the shadow radius $r_{rm sh}$, the deformation parameters $delta _{s}$ and $k_{s}$, and the circularity deviation $Delta C$ can reflect the black hole thermodynamics. In addition, we give the constraints to the relaxation time of the M$87^{*}$ black hole by combining its shadow data and the Bekenstein-Hod universal bounds when the M$87^{*}$ is regarded as the Reissner-Nordstrom or Kerr black hole. Especially, we obtain the formula of the minimum relaxation time $tau _{rm min}$ which equals $8GM/c^3$ for a fixed black hole mass $M$, and predict that the minimum relaxation times of M$87^{*}$ black hole and Sgr $A^{*}$ black hole are approximately 3 days and 2.64 minutes, respectively. Finally, we draw the first graph of the minimum relaxation time $tau _{rm min}$ with respect to the maximum shadow radius $ r_{rm sh}^{rm max}$ at different mass levels.



rate research

Read More

We argue that the equations of motion of quantum field theories in curved backgrounds encode new fundamental black hole thermodynamic relations. We define new entropy variation relations. These `emerge through the monodromies that capture the infinitesimal changes in the black hole background produced by the field excitations. This raises the possibility of new thermodynamic relations defined as independent sums involving entropies, temperatures and angular velocities defined at every black hole horizon. We present explicit results for the sum of all horizon entropy variations for general rotating black holes, both in asymptotically at and asymptotically anti-de Sitter spacetimes in four and higher dimensions. The expressions are universal, and in most cases add up to zero. We also find that these thermodynamic summation relations apply in theories involving multi-charge black holes.
We investigate possibility of emission of the bremsstrahlung photons in nuclear reactions with hypernuclei for the first time. A new model of the bremsstrahlung emission which accompanies interactions between $alpha$ particles and hypernuclei is constructed, where a new formalism for the magnetic momenta of nucleons and hyperon inside hypernucleus is added. For first calculations, we choose $alpha$ decay of the normal nucleus $^{210}{rm Po}$ and the hypernucleus $^{211}_{Lambda}{rm Po}$. We find that (1) emission for the hypernucleus $^{211}_{Lambda}{rm Po}$ is larger than for normal nucleus $^{210}{rm Po}$, (2) difference between these spectra is small. We propose a way how to find hypernuclei, where role of hyperon is the most essential in emission of bremsstrahlung photons during $alpha$ decay. As demonstration of such a property, we show that the spectra for the hypernuclei $^{107}_{Lambda}{rm Te}$ and $^{109}_{Lambda}{rm Te}$ are essentially larger than the spectra for the normal nuclei $^{106}{rm Te}$ and $^{108}{rm Te}$. Such a difference is explained by additional contribution of emission to the full bremsstrahlung, which is formed by magnetic moment of hyperon inside hypernucleus. The bremsstrahlung emission formed by such a mechanism, is of the magnetic type. A new formula for fast estimations of bremsstrahlung spectra for even-even hypernuclei is proposed, where role of magnetic moment of hyperon of hypernucleus in formation of the bremsstrahlung emission is shown explicitly. Such an analysis opens possibility of new experimental study of properties of hypernuclei via bremsstrahlung study.
Combining insights from both the effective field theory of quantum gravity and black hole thermodynamics, we derive two novel consistency relations to be satisfied by any quantum theory of gravity. First, we show that a particular combination of the number of massless (light) fields in the theory must take integer values. Second, we show that, once the massless spectrum is fixed, the Wilson coefficient of the Kretschmann scalar in the low-energy effective theory is fully determined by the logarithm of a single natural number.
In this work, taking the QED effect into account, we investigate the shadows of the Kerr black holes immersed in uniform magnetic fields through the numerical backward ray-tracing method. We introduce a dimensionless parameter $Lambda$ to characterize the strength of magnetic fields and studied the influence of magnetic fields on the Kerr black hole shadows for various spins of the black holes and inclination angles of the observers. In particular, we find that the photon hairs appear near the left edge of the shadow in the presence of magnetic fields. The photon hairs may be served as a signature of the magnetic fields. We notice that the photon hairs become more evident when the strength of magnetic fields or the spin of the black hole becomes larger. In addition, we study the deformation of the shadows by bringing in quantitative parameters that can describe the position and shape of the shadow edge.
In this paper, we have applied the Lorentz-invariance-violation (LIV) class of dispersion relations (DR) with the dimensionless parameter n = 2 and the sign of LIV {eta}_+ = 1, to phenomenologically study the effect of quantum gravity in the strong gravitational field. Specifically, we have studied the effect of the LIV-DR induced quantum gravity on the Schwarzschild black hole thermodynamics. The result shows that the effect of the LIV-DR induced quantum gravity speeds up the black hole evaporation, and its corresponding black hole entropy undergoes a leading logarithmic correction to the reduced Bekenstein-Hawking entropy, and the ill defined situations (i.e. the singularity problem and the critical problem) are naturally bypassed when the LIV-DR effect is present. Also, to put our results in a proper perspective, we have compared with the earlier findings by another quantum gravity candidate, i.e. the generalized uncertainty principle (GUP). Finally, we conclude from the inert remnants at the final stage of the black hole evaporation that, the GUP as a candidate for describing quantum gravity can always do as well as the LIV-DR by adjusting the model-dependent parameters, but in the same model-dependent parameters the LIV-DR acts as a more suitable candidate.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا