No Arabic abstract
We investigate possibility of emission of the bremsstrahlung photons in nuclear reactions with hypernuclei for the first time. A new model of the bremsstrahlung emission which accompanies interactions between $alpha$ particles and hypernuclei is constructed, where a new formalism for the magnetic momenta of nucleons and hyperon inside hypernucleus is added. For first calculations, we choose $alpha$ decay of the normal nucleus $^{210}{rm Po}$ and the hypernucleus $^{211}_{Lambda}{rm Po}$. We find that (1) emission for the hypernucleus $^{211}_{Lambda}{rm Po}$ is larger than for normal nucleus $^{210}{rm Po}$, (2) difference between these spectra is small. We propose a way how to find hypernuclei, where role of hyperon is the most essential in emission of bremsstrahlung photons during $alpha$ decay. As demonstration of such a property, we show that the spectra for the hypernuclei $^{107}_{Lambda}{rm Te}$ and $^{109}_{Lambda}{rm Te}$ are essentially larger than the spectra for the normal nuclei $^{106}{rm Te}$ and $^{108}{rm Te}$. Such a difference is explained by additional contribution of emission to the full bremsstrahlung, which is formed by magnetic moment of hyperon inside hypernucleus. The bremsstrahlung emission formed by such a mechanism, is of the magnetic type. A new formula for fast estimations of bremsstrahlung spectra for even-even hypernuclei is proposed, where role of magnetic moment of hyperon of hypernucleus in formation of the bremsstrahlung emission is shown explicitly. Such an analysis opens possibility of new experimental study of properties of hypernuclei via bremsstrahlung study.
String theory has transformed our understanding of geometry, topology and spacetime. Thus, for this special issue of Foundations of Physics commemorating Forty Years of String Theory, it seems appropriate to step back and ask what we do not understand. As I will discuss, time remains the least understood concept in physical theory. While we have made significant progress in understanding space, our understanding of time has not progressed much beyond the level of a century ago when Einstein introduced the idea of space-time as a combined entity. Thus, I will raise a series of open questions about time, and will review some of the progress that has been made as a roadmap for the future.
The participants in this discussion session of the QCHS 9 meeting were each asked the following question: What would be the most useful piece of information that you could obtain, by whatever means, that would advance your own program, and/or our general understanding of confinement? This proceedings contains a brief summary of each panel members contribution to the discussion, provided by the panel members themselves.
In the present paper, we investigate the cosmographic problem using the bias-variance trade-off. We find that both the z-redshift and the $y=z/(1+z)$-redshift can present a small bias estimation. It means that the cosmography can describe the supernova data more accurately. Minimizing risk, it suggests that cosmography up to the second order is the best approximation. Forecasting the constraint from future measurements, we find that future supernova and redshift drift can significantly improve the constraint, thus having the potential to solve the cosmographic problem. We also exploit the values of cosmography on the deceleration parameter and equation of state of dark energy $w(z)$. We find that supernova cosmography cannot give stable estimations on them. However, much useful information was obtained, such as that the cosmography favors a complicated dark energy with varying $w(z)$, and the derivative $dw/dz<0$ for low redshift. The cosmography is helpful to model the dark energy.
Recent work has presented intriguing results examining the knowledge contained in language models (LM) by having the LM fill in the blanks of prompts such as Obama is a _ by profession. These prompts are usually manually created, and quite possibly sub-optimal; another prompt such as Obama worked as a _ may result in more accurately predicting the correct profession. Because of this, given an inappropriate prompt, we might fail to retrieve facts that the LM does know, and thus any given prompt only provides a lower bound estimate of the knowledge contained in an LM. In this paper, we attempt to more accurately estimate the knowledge contained in LMs by automatically discovering better prompts to use in this querying process. Specifically, we propose mining-based and paraphrasing-based methods to automatically generate high-quality and diverse prompts, as well as ensemble methods to combine answers from different prompts. Extensive experiments on the LAMA benchmark for extracting relational knowledge from LMs demonstrate that our methods can improve accuracy from 31.1% to 39.6%, providing a tighter lower bound on what LMs know. We have released the code and the resulting LM Prompt And Query Archive (LPAQA) at https://github.com/jzbjyb/LPAQA.
We investigate emission of bremsstrahlung photons during scattering of $alpha$-particles off nuclei. For that, we construct bremsstrahlung model for $alpha$-nucleus scattering, where a new formalism for coherent and incoherent bremsstrahlung emissions in elastic scattering and mechanisms in inelastic scattering is added. Basing of this approach, we analyze experimental bremsstrahlung cross-sections in the scattering of $alpha$-particles off the isotope[59]{Co}, isotope[116]{Sn}, isotope[rm nat]{Ag} and isotope[197]{Au} nuclei at 50 MeV of $alpha$-particles beam measured at the Variable Energy Cyclotron Centre, Calcutta. We observe oscillations in the calculated spectra for elastic scattering for each nucleus. But, for isotope[59]{Co}, isotope[116]{Sn} and isotope[rm nat]{Ag} we obtain good agreement between calculated coherent spectrum with incoherent contribution for elastic scattering with experimental data in the full photon energy region. For heavy nucleus isotope[197]{Au} we find that (1) Oscillating behavior of the calculated spectrum of coherent emission in elastic scattering is in disagreement with experimental data, (2) Inclusion of incoherent emission improves description of the data, but summarized spectrum is in satisfactory agreement with the experimental data. To understand unknown modification of wave function for scattering, we add new mechanisms of inelastic scattering to calculations and extract information about unknown new amplitude of such mechanisms from experimental data analysis. This amplitude has maxima at some energies, that characterizes existence of states of the most compact structures (clusters) in nucleus-target. We explain origin of oscillations in the bremsstrahlung spectra for elastic scattering (at first time). New information about coherent and incoherent contributions is extracted for studied reactions.