No Arabic abstract
The concept of flow is used extensively in HCI, video games, and many other fields, but its prevalent definition is conceptually vague and alternative interpretations have contributed to ambiguity in the literature. To address this, we use cognitive science theory to expose inconsistencies in flows prevalent definition, and introduce fuse, a concept related to flow but consistent with cognitive science, and defined as the fusion of activity-related sensory stimuli and awareness. Based on this definition, we develop a preliminary model that hypothesizes fuses underlying cognitive processes. To illustrate the models practical value, we derive a set of design heuristics that we exemplify in the context of video games. Together, the fuse definition, model and design heuristics form our theoretical framework, and are a product of rethinking flow from a cognitive perspective with the purpose of improving conceptual clarity and theoretical robustness in the literature.
This paper presents a novel game prototype that uses music and motion detection as preventive medicine for the elderly. Given the aging populations around the globe, and the limited resources and staff able to care for these populations, eHealth solutions are becoming increasingly important, if not crucial, additions to modern healthcare and preventive medicine. Furthermore, because compliance rates for performing physical exercises are often quite low in the elderly, systems able to motivate and engage this population are a necessity. Our prototype uses music not only to engage listeners, but also to leverage the efficacy of music to improve mental and physical wellness. The game is based on a memory task to stimulate cognitive function, and requires users to perform physical gestures to mimic the playing of different musical instruments. To this end, the Microsoft Kinect sensor is used together with a newly developed gesture detection module in order to process users gestures. The resulting prototype system supports both cognitive functioning and physical strengthening in the elderly.
People supported by AI-powered decision support tools frequently overrely on the AI: they accept an AIs suggestion even when that suggestion is wrong. Adding explanations to the AI decisions does not appear to reduce the overreliance and some studies suggest that it might even increase it. Informed by the dual-process theory of cognition, we posit that people rarely engage analytically with each individual AI recommendation and explanation, and instead develop general heuristics about whether and when to follow the AI suggestions. Building on prior research on medical decision-making, we designed three cognitive forcing interventions to compel people to engage more thoughtfully with the AI-generated explanations. We conducted an experiment (N=199), in which we compared our three cognitive forcing designs to two simple explainable AI approaches and to a no-AI baseline. The results demonstrate that cognitive forcing significantly reduced overreliance compared to the simple explainable AI approaches. However, there was a trade-off: people assigned the least favorable subjective ratings to the designs that reduced the overreliance the most. To audit our work for intervention-generated inequalities, we investigated whether our interventions benefited equally people with different levels of Need for Cognition (i.e., motivation to engage in effortful mental activities). Our results show that, on average, cognitive forcing interventions benefited participants higher in Need for Cognition more. Our research suggests that human cognitive motivation moderates the effectiveness of explainable AI solutions.
At the latest since the advent of the Internet, disinformation and conspiracy theories have become ubiquitous. Recent examples like QAnon and Pizzagate prove that false information can lead to real violence. In this motivation statement for the Workshop on Human Aspects of Misinformation at CHI 2021, I explain my research agenda focused on 1. why people believe in disinformation, 2. how people can be best supported in recognizing disinformation, and 3. what the potentials and risks of different tools designed to fight disinformation are.
Wearable Cognitive Assistants (WCA) are anticipated to become a widely-used application class, in conjunction with emerging network infrastructures like 5G that incorporate edge computing capabilities. While prototypical studies of such applications exist today, the relationship between infrastructure service provisioning and its implication for WCA usability is largely unexplored despite the relevance that these applications have for future networks. This paper presents an experimental study assessing how WCA users react to varying end-to-end delays induced by the application pipeline or infrastructure. Participants interacted directly with an instrumented task-guidance WCA as delays were introduced into the system in a controllable fashion. System and task state were tracked in real time, and biometric data from wearable sensors on the participants were recorded. Our results show that periods of extended system delay cause users to correspondingly (and substantially) slow down in their guided task execution, an effect that persists for a time after the system returns to a more responsive state. Furthermore, the slow-down in task execution is correlated with a personality trait, neuroticism, associated with intolerance for time delays. We show that our results implicate impaired cognitive planning, as contrasted with resource depletion or emotional arousal, as the reason for slowed user task executions under system delay. The findings have several implications for the design and operation of WCA applications as well as computational and communication infrastructure, and additionally for the development of performance analysis tools for WCA.
Crowdsourcing can identify high-quality solutions to problems; however, individual decisions are constrained by cognitive biases. We investigate some of these biases in an experimental model of a question-answering system. In both natural and controlled experiments, we observe a strong position bias in favor of answers appearing earlier in a list of choices. This effect is enhanced by three cognitive factors: the attention an answer receives, its perceived popularity, and cognitive load, measured by the number of choices a user has to process. While separately weak, these effects synergistically amplify position bias and decouple user choices of best answers from their intrinsic quality. We end our paper by discussing the novel ways we can apply these findings to substantially improve how high-quality answers are found in question-answering systems.