Do you want to publish a course? Click here

To Trust or to Think: Cognitive Forcing Functions Can Reduce Overreliance on AI in AI-assisted Decision-making

106   0   0.0 ( 0 )
 Added by Zana Bu\\c{c}inca
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

People supported by AI-powered decision support tools frequently overrely on the AI: they accept an AIs suggestion even when that suggestion is wrong. Adding explanations to the AI decisions does not appear to reduce the overreliance and some studies suggest that it might even increase it. Informed by the dual-process theory of cognition, we posit that people rarely engage analytically with each individual AI recommendation and explanation, and instead develop general heuristics about whether and when to follow the AI suggestions. Building on prior research on medical decision-making, we designed three cognitive forcing interventions to compel people to engage more thoughtfully with the AI-generated explanations. We conducted an experiment (N=199), in which we compared our three cognitive forcing designs to two simple explainable AI approaches and to a no-AI baseline. The results demonstrate that cognitive forcing significantly reduced overreliance compared to the simple explainable AI approaches. However, there was a trade-off: people assigned the least favorable subjective ratings to the designs that reduced the overreliance the most. To audit our work for intervention-generated inequalities, we investigated whether our interventions benefited equally people with different levels of Need for Cognition (i.e., motivation to engage in effortful mental activities). Our results show that, on average, cognitive forcing interventions benefited participants higher in Need for Cognition more. Our research suggests that human cognitive motivation moderates the effectiveness of explainable AI solutions.



rate research

Read More

Clinical decision support tools (DST) promise improved healthcare outcomes by offering data-driven insights. While effective in lab settings, almost all DSTs have failed in practice. Empirical research diagnosed poor contextual fit as the cause. This paper describes the design and field evaluation of a radically new form of DST. It automatically generates slides for clinicians decision meetings with subtly embedded machine prognostics. This design took inspiration from the notion of Unremarkable Computing, that by augmenting the users routines technology/AI can have significant importance for the users yet remain unobtrusive. Our field evaluation suggests clinicians are more likely to encounter and embrace such a DST. Drawing on their responses, we discuss the importance and intricacies of finding the right level of unremarkableness in DST design, and share lessons learned in prototyping critical AI systems as a situated experience.
How to attribute responsibility for autonomous artificial intelligence (AI) systems actions has been widely debated across the humanities and social science disciplines. This work presents two experiments ($N$=200 each) that measure peoples perceptions of eight different notions of moral responsibility concerning AI and human agents in the context of bail decision-making. Using real-life adapted vignettes, our experiments show that AI agents are held causally responsible and blamed similarly to human agents for an identical task. However, there was a meaningful difference in how people perceived these agents moral responsibility; human agents were ascribed to a higher degree of present-looking and forward-looking notions of responsibility than AI agents. We also found that people expect both AI and human decision-makers and advisors to justify their decisions regardless of their nature. We discuss policy and HCI implications of these findings, such as the need for explainable AI in high-stakes scenarios.
Across a growing number of domains, human experts are expected to learn from and adapt to AI with superior decision making abilities. But how can we quantify such human adaptation to AI? We develop a simple measure of human adaptation to AI and test its usefulness in two case studies. In Study 1, we analyze 1.3 million move decisions made by professional Go players and find that a positive form of adaptation to AI (learning) occurred after the players could observe the reasoning processes of AI, rather than mere actions of AI. These findings based on our measure highlight the importance of explainability for human learning from AI. In Study 2, we test whether our measure is sufficiently sensitive to capture a negative form of adaptation to AI (cheating aided by AI), which occurred in a match between professional Go players. We discuss our measures applications in domains other than Go, especially in domains in which AIs decision making ability will likely surpass that of human experts.
Machine learning models are increasingly integrated into societally critical applications such as recidivism prediction and medical diagnosis, thanks to their superior predictive power. In these applications, however, full automation is often not desired due to ethical and legal concerns. The research community has thus ventured into developing interpretable methods that explain machine predictions. While these explanations are meant to assist humans in understanding machine predictions and thereby allowing humans to make better decisions, this hypothesis is not supported in many recent studies. To improve human decision-making with AI assistance, we propose future directions for closing the gap between the efficacy of explanations and improvement in human performance.
Explainability of AI systems is critical for users to take informed actions and hold systems accountable. While opening the opaque box is important, understanding who opens the box can govern if the Human-AI interaction is effective. In this paper, we conduct a mixed-methods study of how two different groups of whos--people with and without a background in AI--perceive different types of AI explanations. These groups were chosen to look at how disparities in AI backgrounds can exacerbate the creator-consumer gap. We quantitatively share what the perceptions are along five dimensions: confidence, intelligence, understandability, second chance, and friendliness. Qualitatively, we highlight how the AI background influences each groups interpretations and elucidate why the differences might exist through the lenses of appropriation and cognitive heuristics. We find that (1) both groups had unwarranted faith in numbers, to different extents and for different reasons, (2) each group found explanatory values in different explanations that went beyond the usage we designed them for, and (3) each group had different requirements of what counts as humanlike explanations. Using our findings, we discuss potential negative consequences such as harmful manipulation of user trust and propose design interventions to mitigate them. By bringing conscious awareness to how and why AI backgrounds shape perceptions of potential creators and consumers in XAI, our work takes a formative step in advancing a pluralistic Human-centered Explainable AI discourse.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا