No Arabic abstract
In this paper we study the deployment of multiple unmanned aerial vehicles (UAVs) to form a temporal UAV network for the provisioning of emergent communications to affected people in a disaster zone, where each UAV is equipped with a lightweight base station device and thus can act as an aerial base station for users. Unlike most existing studies that assumed that a UAV can serve all users in its communication range, we observe that both computation and communication capabilities of a single lightweight UAV are very limited, due to various constraints on its size, weight, and power supply. Thus, a single UAV can only provide communication services to a limited number of users. We study a novel problem of deploying $K$ UAVs in the top of a disaster area such that the sum of the data rates of users served by the UAVs is maximized, subject to that (i) the number of users served by each UAV is no greater than its service capacity; and (ii) the communication network induced by the $K$ UAVs is connected. We then propose a $frac{1-1/e}{lfloor sqrt{K} rfloor}$-approximation algorithm for the problem, improving the current best result of the problem by five times (the best approximation ratio so far is $frac{1-1/e}{5( sqrt{K} +1)}$), where $e$ is the base of the natural logarithm. We finally evaluate the algorithm performance via simulation experiments. Experimental results show that the proposed algorithm is very promising. Especially, the solution delivered by the proposed algorithm is up to 12% better than those by existing algorithms.
In modern distributed computing systems, unpredictable and unreliable infrastructures result in high variability of computing resources. Meanwhile, there is significantly increasing demand for timely and event-driven services with deadline constraints. Motivated by measurements over Amazon EC2 clusters, we consider a two-state Markov model for variability of computing speed in cloud networks. In this model, each worker can be either in a good state or a bad state in terms of the computation speed, and the transition between these states is modeled as a Markov chain which is unknown to the scheduler. We then consider a Coded Computing framework, in which the data is possibly encoded and stored at the worker nodes in order to provide robustness against nodes that may be in a bad state. With timely computation requests submitted to the system with computation deadlines, our goal is to design the optimal computation-load allocation scheme and the optimal data encoding scheme that maximize the timely computation throughput (i.e, the average number of computation tasks that are accomplished before their deadline). Our main result is the development of a dynamic computation strategy called Lagrange Estimate-and Allocate (LEA) strategy, which achieves the optimal timely computation throughput. It is shown that compared to the static allocation strategy, LEA increases the timely computation throughput by 1.4X - 17.5X in various scenarios via simulations and by 1.27X - 6.5X in experiments over Amazon EC2 clusters
We consider a data aggregating wireless network where all nodes have data to send to a single destination node, the sink. We consider a linear placement of nodes with the sink at one end. The nodes communicate directly to the sink (single hop transmission) and we assume that the nodes are scheduled one at a time by a central scheduler (possibly the sink). The wireless nodes are power limited and our network objective (notion of fairness) is to maximize the minimum throughput of the nodes subject to the node power constraints. In this work, we consider network designs that permit adapting node transmission time, node transmission power and node placements, and study cross- layer strategies that seek to maximize the network throughput. Using simulations, we characterize the performance of the dif- ferent strategies and comment on their applicability for various network scenarios.
In this paper, we study distributed algorithms for large-scale AUC maximization with a deep neural network as a predictive model. Although distributed learning techniques have been investigated extensively in deep learning, they are not directly applicable to stochastic AUC maximization with deep neural networks due to its striking differences from standard loss minimization problems (e.g., cross-entropy). Towards addressing this challenge, we propose and analyze a communication-efficient distributed optimization algorithm based on a {it non-convex concave} reformulation of the AUC maximization, in which the communication of both the primal variable and the dual variable between each worker and the parameter server only occurs after multiple steps of gradient-based updates in each worker. Compared with the naive parallel version of an existing algorithm that computes stochastic gradients at individual machines and averages them for updating the model parameters, our algorithm requires a much less number of communication rounds and still achieves a linear speedup in theory. To the best of our knowledge, this is the textbf{first} work that solves the {it non-convex concave min-max} problem for AUC maximization with deep neural networks in a communication-efficient distributed manner while still maintaining the linear speedup property in theory. Our experiments on several benchmark datasets show the effectiveness of our algorithm and also confirm our theory.
Deployment of unmanned aerial vehicles (UAVs) is recently getting significant attention due to a variety of practical use cases, such as surveillance, data gathering, and commodity delivery. Since UAVs are powered by batteries, energy efficient communication is of paramount importance. In this paper, we investigate the problem of lifetime maximization of a UAV-assisted network in the presence of multiple sources of interference, where the UAVs are deployed to collect data from a set of wireless sensors. We demonstrate that the placement of the UAVs play a key role in prolonging the lifetime of the network since the required transmission powers of the UAVs are closely related to their locations in space. In the proposed scenario, the UAVs transmit the gathered data to a primary UAV called textit{leader}, which is in charge of forwarding the data to the base station (BS) via a backhaul UAV network. We deploy tools from spectral graph theory to tackle the problem due to its high non-convexity. Simulation results demonstrate that our proposed method can significantly improve the lifetime of the UAV network.
This letter proposes a new full-duplex (FD) secrecy communication scheme for the unmanned aerial vehicle (UAV) and investigates its optimal design to achieve the maximum energy efficiency (EE) of the UAV. Specifically, the UAV receives the confidential information from a ground source and meanwhile sends jamming signals to interfere with a potential ground eavesdropper. As the UAV has limited on-board energy in practice, we aim to maximize the EE for its secrecy communication, by jointly optimizing the UAV trajectory and the source/UAV transmit/jamming powers over a finite flight period with given initial and final locations. Although the problem is difficult to solve, we propose an efficient iterative algorithm to obtain its suboptimal solution. Simulation results show that the proposed joint design can significantly improve the EE of UAV secrecy communication, as compared to various benchmark schemes.