No Arabic abstract
We study a class of second-order degenerate linear parabolic equations in divergence form in $(-infty, T) times mathbb R^d_+$ with homogeneous Dirichlet boundary condition on $(-infty, T) times partial mathbb R^d_+$, where $mathbb R^d_+ = {x in mathbb R^d,:, x_d>0}$ and $Tin {(-infty, infty]}$ is given. The coefficient matrices of the equations are the product of $mu(x_d)$ and bounded uniformly elliptic matrices, where $mu(x_d)$ behaves like $x_d^alpha$ for some given $alpha in (0,2)$, which are degenerate on the boundary ${x_d=0}$ of the domain. Under a partially VMO assumption on the coefficients, we obtain the wellposedness and regularity of solutions in weighted Sobolev spaces. Our results can be readily extended to systems.
We study a class of linear parabolic equations in divergence form with degenerate coefficients on the upper half space. Specifically, the equations are considered in $(-infty, T) times mathbb{R}^d_+$, where $mathbb{R}^d_+ = {x in mathbb{R}^d,:, x_d>0}$ and $Tin {(-infty, infty]}$ is given, and the diffusion matrices are the product of $x_d$ and bounded uniformly elliptic matrices, which are degenerate at ${x_d=0}$. As such, our class of equations resembles well the corresponding class of degenerate viscous Hamilton-Jacobi equations. We obtain wellposedness results and regularity type estimates in some appropriate weighted Sobolev spaces for the solutions.
In this paper we shall classify all positive solutions of $ Delta u =a u^p$ on the upper half space $ H =Bbb{R}_+^n$ with nonlinear boundary condition $ {partial u}/{partial t}= - b u^q $ on $partial H$ for both positive parameters $a, b>0$. We will prove that for $p ge {(n+2)}/{(n-2)}, 1leq q<{n}/{(n-2)}$ (and $n ge 3$) all positive solutions are functions of last variable; for $p= {(n+2)}/{(n-2)}, q= {n}/{(n-2)}$ (and $n ge 3$) positive solutions must be either some functions depending only on last variable, or radially symmetric functions.
For a general class of divergence type quasi-linear degenerate parabolic equations with differentiable structure and lower order coefficients form bounded with respect to the Laplacian we obtain $L^q$-estimates for the gradients of solutions, and for the lower order coefficients from a Kato-type class we show that the solutions are Lipschitz continuous with respect to the space variable.
In this paper, we study both elliptic and parabolic equations in non-divergence form with singular degenerate coefficients. Weighted and mixed-norm $L_p$-estimates and solvability are established under some suitable partially weighted BMO regularity conditions on the coefficients. When the coefficients are constants, the operators are reduced to extensional operators which arise in the study of fractional heat equations and fractional Laplace equations. Our results are new even in this setting and in the unmixed case. For the proof, we establish both interior and boundary Lipschitz estimates for solutions and for higher order derivatives of solutions to homogeneous equations. We then employ the perturbation method by using the Fefferman-Stein sharp function theorem, the Hardy-Littlewood maximum function theorem, as well as a weighted Hardys inequality.
In this paper, we establish $L_p$ estimates and solvability for time fractional divergence form parabolic equations in the whole space when leading coefficients are merely measurable in one spatial variable and locally have small mean oscillations with respect to the other variables. The corresponding results for equations on a half space are also derived.