Do you want to publish a course? Click here

Weakly special test configurations of log canonical Fano varieties

84   0   0.0 ( 0 )
 Added by Chuyu Zhou
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Let $X$ be a strictly log canonical Fano variety, we show that every lc place of complements is dreamy, and there exists a correspondence between weakly special test configurations of $(X,-K_X)$ and lc places of complements.



rate research

Read More

110 - Qi Zhang 2004
In this paper, we give an affirmative answer to a conjecture in the Minimal Model Program. We prove that log $Q$-Fano varieties of dim $n$ are rationally connected. We also study the behavior of the canonical bundles under projective morphisms.
Shokurovs ACC Conjecture says that the set of all log canonical thresholds on varieties of bounded dimension satisfies the Ascending Chain Condition. This conjecture was proved for log canonical thresholds on smooth varieties in [EM1]. Here we use this result and inversion of adjunction to establish the conjecture for locally complete intersection varieties.
Let T_n denote the set of log canonical thresholds of pairs (X,Y), with X a nonsingular variety of dimension n, and Y a nonempty closed subscheme of X. Using non-standard methods, we show that every limit of a decreasing sequence in T_n lies in T_{n-1}, proving in this setting a conjecture of Koll{a}r. We also show that T_n is a closed subset in the set of real numbers; in particular, every limit of log canonical thresholds on smooth varieties of fixed dimension is a rational number. As a consequence of this property, we see that in order to check Shokurovs ACC Conjecture for all T_n, it is enough to show that 1 is not a point of accumulation from below of any T_n. In a different direction, we interpret the ACC Conjecture as a semi-continuity property for log canonical thresholds of formal power series.
109 - Osamu Fujino 2020
We establish a relative spannedness for log canonical pairs, which is a generalization of the basepoint-freeness for varieties with log-terminal singularities by Andreatta--Wisniewski. Moreover, we establish a generalization for quasi-log canonical pairs.
We develop a general approach to prove K-stability of Fano varieties. The new theory is used to (a) prove the existence of Kahler-Einstein metrics on all smooth Fano hypersurfaces of Fano index two, (b) to compute the stability thresholds for hypersurfaces at generalized Eckardt points and for cubic surfaces at all points, and (c) to provide a new algebraic proof of Tians criterion for K-stability, amongst other applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا