Do you want to publish a course? Click here

A relative spannedness for log canonical pairs and quasi-log canonical pairs

110   0   0.0 ( 0 )
 Added by Osamu Fujino
 Publication date 2020
  fields
and research's language is English
 Authors Osamu Fujino




Ask ChatGPT about the research

We establish a relative spannedness for log canonical pairs, which is a generalization of the basepoint-freeness for varieties with log-terminal singularities by Andreatta--Wisniewski. Moreover, we establish a generalization for quasi-log canonical pairs.



rate research

Read More

95 - Osamu Fujino 2020
We establish a kind of subadjunction formula for quasi-log canonical pairs. As an application, we prove that a connected projective quasi-log canonical pair whose quasi-log canonical class is anti-ample is simply connected and rationally chain connected. We also supplement the cone theorem for quasi-log canonical pairs. More precisely, we prove that every negative extremal ray is spanned by a rational curve. Finally, we treat the notion of Mori hyperbolicity for quasi-log canonical pairs.
Using inversion of adjunction, we deduce from Nadels theorem a vanishing property for ideals sheaves on projective varieties, a special case of which recovers a result due to Bertram--Ein--Lazarsfeld. This enables us to generalize to a large class of projective schemes certain bounds on Castelnuovo--Mumford regularity previously obtained by Bertram--Ein--Lazarsfeld in the smooth case and by Chardin--Ulrich for locally complete intersection varieties with rational singularities. Our results are tested on several examples.
81 - Jingjun Han , Wenfei Liu 2018
The nonvanishing conjecture for projective log canonical pairs plays a key role in the minimal model program of higher dimensional algebraic geometry. The numerical nonvanishing conjecture considered in this paper is a weaker version of the usual nonvanishing conjecture, but valid in the more general setting of generalized log canonical pairs. We confirm it in dimension two. Under some necessary conditions we obtain effecti
81 - Haidong Liu 2019
In this paper, we show that Fujitas basepoint-freeness conjecture for projective quasi-log canonical singularities holds true in dimension three. Immediately, we prove Fujita-type basepoint-freeness for projective semi-log canonical threefolds.
The log canonical ring of a projective plt pair with the Kodaira dimension two is finitely generated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا