Do you want to publish a course? Click here

Refined physical parameters for Chariklos body and rings from stellar occultations observed between 2013 and 2020

91   0   0.0 ( 0 )
 Added by Bruno Morgado Dr.
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Centaur (10199) Chariklo has the first rings system discovered around a small object. It was first observed using stellar occultation in 2013. Stellar occultations allow the determination of sizes and shapes with kilometre accuracy and obtain characteristics of the occulting object and its vicinity. Using stellar occultations observed between 2017 and 2020, we aim at constraining Chariklos and its rings physical parameters. We also determine the rings structure, and obtain precise astrometrical positions of Chariklo. We predicted and organised several observational campaigns of stellar occultations by Chariklo. Occultation light curves were measured from the data sets, from which ingress and egress times, and rings width and opacity were obtained. These measurements, combined with results from previous works, allow us to obtain significant constraints on Chariklos shape and rings structure. We characterise Chariklos ring system (C1R and C2R), and obtain radii and pole orientations that are consistent with, but more accurate than, results from previous occultations. We confirmed the detection of W-shaped structures within C1R and an evident variation of radial width. The observed width ranges between 4.8 and 9.1 km with a mean value of 6.5 km. One dual observation (visible and red) does not reveal any differences in the C1R opacity profiles, indicating ring particles size larger than a few microns. The C1R ring eccentricity is found to be smaller than 0.022 (3-sigma), and its width variations may indicate an eccentricity higher than 0.005. We fit a tri-axial shape to Chariklos detections over eleven occultations and determine that Chariklo is consistent with an ellipsoid with semi-axes of 143.8, 135.2 and 99.1 km. Ultimately, we provided seven astrometric positions at a milliarcseconds accuracy level, based on Gaia EDR3, and use it to improve Chariklos ephemeris.



rate research

Read More

Two narrow and dense rings (called C1R and C2R) were discovered around the Centaur object (10199) Chariklo during a stellar occultation observed on 2013 June 3. Following this discovery, we planned observations of several occultations by Chariklos system in order to better characterize the physical properties of the ring and main body. Here, we use 12 successful occulations by Chariklo observed between 2014 and 2016. They provide ring profiles (physical width, opacity, edge structure) and constraints on the radii and pole position. Our new observations are currently consistent with the circular ring solution and pole position, to within the $pm 3.3$ km formal uncertainty for the ring radii derived by Braga-Ribas et al. The six resolved C1R profiles reveal significant width variations from $sim 5$ to 7.5 km. The width of the fainter ring C2R is less constrained, and may vary between 0.1 and 1 km. The inner and outer edges of C1R are consistent with infinitely sharp boundaries, with typical upper limits of one kilometer for the transition zone between the ring and empty space. No constraint on the sharpness of C2Rs edges is available. A 1$sigma$ upper limit of $sim 20$ m is derived for the equivalent width of narrow (physical width <4 km) rings up to distances of 12,000 km, counted in the ring plane.
We analyze two multi-chord stellar occultations by Pluto observed on July 18th, 2012 and May 4th, 2013, and monitored respectively from five and six sites. They provide a total of fifteen light-curves, twelve of them being used for a simultaneous fit that uses a unique temperature profile, assuming a clear (no-haze) and pure N_2 atmosphere, but allowing for a possible pressure variation between the two dates. We find a solution that fits satisfactorily (i.e. within the noise level) all the twelve light-curves, providing atmospheric constraints between ~1,190 km (pressure ~ 11 mubar) and ~ 1,450 km (pressure ~0.1 mubar) from Plutos center. Our main results are: (1) the best-fitting temperature profile shows a stratosphere with strong positive gradient between 1,190 km (at 36 K, 11 mubar) and r = 1,215 km (6.0 mubar), where a temperature maximum of 110 K is reached; above it is a mesosphere with negative thermal gradient of -0.2 K/km up to ~ 1,390 km (0.25 mubar), where, the mesosphere connects itself to a more isothermal upper branch around 81 K; (2) the pressure shows a small (6 %) but significant increase (6-sigma level) between the two dates; (3) without troposphere, Plutos radius is found to be R_P = 1,190 +/- 5km. Allowing for a troposphere, R_P is constrained to lie between 1,168 and 1,195 km; (4) the currently measured CO abundance is too small to explain the mesospheric negative thermal gradient. Cooling by HCN is possible, but only if this species is largely saturated; Alternative explanations like zonal winds or vertical compositional variations of the atmosphere are unable to explain the observed mesospheric trend.
109 - Margaret Pan 2016
Observations in 2013 and 2014 of the Centaur 10199 Chariklo and its ring system consistently indicated that the radial width of the inner, more massive ring varies with longitude. That strongly suggests that this ring has a finite eccentricity despite the fast differential precession that Chariklos large quadrupole moment should induce. If the inferred apse alignment is maintained by the rings self-gravity, as it is for the Uranian rings, we estimate a ring mass of a few times 10^16 g and a typical particle size of a few meters. These imply a short collisional spreading time of ~10^5 years, somewhat shorter than the typical Centaur dynamical lifetime of a few Myrs and much shorter than the age of the solar system. In light of this time constraint, we evaluate previously suggested ring formation pathways including collisional ejection and satellite disruption. We also investigate in detail a contrasting formation mechanism, the lofting of dust particles off Chariklos surface into orbit via outflows of sublimating CO and/or N_2 triggered after Chariklo was scattered inward by giant planets. This latter scenario predicts that rings should be common among 100-km class Centaurs but rare among Kuiper belt objects and smaller Centaurs. It also predicts that Centaurs should show seasonal variations in cometary activity with activity maxima occurring shortly after equinox.
101 - P. Santos-Sanz 2015
In this paper we investigate the opportunities provided by the James Webb Space Telescope (JWST) for significant scientific advances in the study of solar system bodies and rings using stellar occultations. The strengths and weaknesses of the stellar occultation technique are evaluated in light of JWSTs unique capabilities. We identify several possible JWST occultation events by minor bodies and rings, and evaluate their potential scientific value. These predictions depend critically on accurate a priori knowledge of the orbit of JWST near the Sun-Earth Lagrange-point 2 (L2). We also explore the possibility of serendipitous stellar occultations by very small minor bodies as a by-product of other JWST observing programs. Finally, to optimize the potential scientific return of stellar occultation observations, we identify several characteristics of JWSTs orbit and instrumentation that should be taken into account during JWSTs development.
We present the results from four stellar occultations by (486958) Arrokoth, the flyby target of the New Horizons extended mission. Three of the four efforts led to positive detections of the body, and all constrained the presence of rings and other debris, finding none. Twenty-five mobile stations were deployed for 2017 June 3 and augmented by fixed telescopes. There were no positive detections from this effort. The event on 2017 July 10 was observed by SOFIA with one very short chord. Twenty-four deployed stations on 2017 July 17 resulted in five chords that clearly showed a complicated shape consistent with a contact binary with rough dimensions of 20 by 30 km for the overall outline. A visible albedo of 10% was derived from these data. Twenty-two systems were deployed for the fourth event on 2018 Aug 4 and resulted in two chords. The combination of the occultation data and the flyby results provides a significant refinement of the rotation period, now estimated to be 15.9380 $pm$ 0.0005 hours. The occultation data also provided high-precision astrometric constraints on the position of the object that were crucial for supporting the navigation for the New Horizons flyby. This work demonstrates an effective method for obtaining detailed size and shape information and probing for rings and dust on distant Kuiper Belt objects as well as being an important source of positional data that can aid in spacecraft navigation that is particularly useful for small and distant bodies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا