Do you want to publish a course? Click here

Nice pseudo-Riemannian nilsolitons

357   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We study nice nilpotent Lie algebras admitting a diagonal nilsoliton metric. We classify nice Riemannian nilsolitons up to dimension $9$. For general signature, we show that determining whether a nilpotent nice Lie algebra admits a nilsoliton metric reduces to a linear problem together with a system of as many polynomial equations as the corank of the root matrix. We classify nice nilsolitons of any signature: in dimension $leq 7$; in dimension $8$ for corank $leq 1$; in dimension $9$ for corank zero.



rate research

Read More

211 - P. Gilkey , S. Nikcevic 2007
We exhibit several families of Jacobi-Videv pseudo-Riemannian manifolds which are not Einstein. We also exhibit Jacobi-Videv algebraic curvature tensors where the Ricci operator defines an almost complex structure.
283 - Brian Clarke 2011
We give a concise proof that large classes of optimal (constant curvature or Einstein) pseudo-Riemannian metrics are maximally symmetric within their conformal class.
The notion of $Gamma$-symmetric space is a natural generalization of the classical notion of symmetric space based on $Z_2$-grading of Lie algebras. In our case, we consider homogeneous spaces $G/H$ such that the Lie algebra $g$ of $G$ admits a $Gamma$-grading where $Gamma$ is a finite abelian group. In this work we study Riemannian metrics and Lorentzian metrics on the Heisenberg group $mathbb{H}_3$ adapted to the symmetries of a $Gamma$-symmetric structure on $mathbb{H}_3$. We prove that the classification of $z$-symmetric Riemannian and Lorentzian metrics on $mathbb{H}_3$ corresponds to the classification of left-invariant Riemannian and Lorentzian metrics, up to isometry. We study also the $Z_2^k$-symmetric structures on $G/H$ when $G$ is the $(2p+1)$-dimensional Heisenberg group for $k geq 1$. This gives examples of non riemannian symmetric spaces. When $k geq 1$, we show that there exists a family of flat and torsion free affine connections adapted to the $Z_2^k$-symmetric structures.
231 - Yuxin Dong , Ye-Lin Ou 2015
In this paper, we derived biharmonic equations for pseudo-Riemannian submanifolds of pseudo-Riemannian manifolds which includes the biharmonic equations for submanifolds of Riemannian manifolds as a special case. As applications, we proved that a pseudo-umbilical biharmonic pseudo-Riemannian submanifold of a pseudo-Riemannian manifold has constant mean curvature, we completed the classifications of biharmonic pseudo-Riemannian hypersurfaces with at most two distinct principal curvatures, which were used to give four construction methods to produce proper biharmonic pseudo-Riemannian submanifolds from minimal submanifolds. We also made some comparison study between biharmonic hypersurfaces of Riemannian space forms and the space-like biharmonic hypersurfaces of pseudo-Riemannian space forms.
126 - Yibin Ren , Guilin Yang 2017
In this paper, we discuss the heat flow of a pseudo-harmonic map from a closed pseudo-Hermitian manifold to a Riemannian manifold with non-positive sectional curvature, and prove the existence of the pseudo-harmonic map which is a generalization of Eells-Sampsons existence theorem. We also discuss the uniqueness of the pseudo-harmonic representative of its homotopy class which is a generalization of Hartman theorem, provided that the target manifold has negative sectional curvature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا