We give a concise proof that large classes of optimal (constant curvature or Einstein) pseudo-Riemannian metrics are maximally symmetric within their conformal class.
We study pseudo-Riemannian invariant metrics on bicovariant bimodules over Hopf algebras. We clarify some properties of such metrics and prove that pseudo-Riemannian invariant metrics on a bicovariant bimodule and its cocycle deformations are in one to one correspondence.
We study nice nilpotent Lie algebras admitting a diagonal nilsoliton metric. We classify nice Riemannian nilsolitons up to dimension $9$. For general signature, we show that determining whether a nilpotent nice Lie algebra admits a nilsoliton metric reduces to a linear problem together with a system of as many polynomial equations as the corank of the root matrix. We classify nice nilsolitons of any signature: in dimension $leq 7$; in dimension $8$ for corank $leq 1$; in dimension $9$ for corank zero.
We study Riemannian metrics on Lie groupoids in the relative setting. We show that any split fibration between proper groupoids can be made Riemannian, and we use these metrics to linearize proper groupoid fibrations. As an application, we derive rigidity theorems for Lie groupoids, which unify, simplify and improve similar results for classic geometries. Then we establish the Morita invariance for our metrics, introduce a notion for metrics on stacks, and use them to construct stacky tubular neighborhoods and to prove a stacky Ehresmann theorem.
In this paper, we derived biharmonic equations for pseudo-Riemannian submanifolds of pseudo-Riemannian manifolds which includes the biharmonic equations for submanifolds of Riemannian manifolds as a special case. As applications, we proved that a pseudo-umbilical biharmonic pseudo-Riemannian submanifold of a pseudo-Riemannian manifold has constant mean curvature, we completed the classifications of biharmonic pseudo-Riemannian hypersurfaces with at most two distinct principal curvatures, which were used to give four construction methods to produce proper biharmonic pseudo-Riemannian submanifolds from minimal submanifolds. We also made some comparison study between biharmonic hypersurfaces of Riemannian space forms and the space-like biharmonic hypersurfaces of pseudo-Riemannian space forms.
We exhibit several families of Jacobi-Videv pseudo-Riemannian manifolds which are not Einstein. We also exhibit Jacobi-Videv algebraic curvature tensors where the Ricci operator defines an almost complex structure.