No Arabic abstract
We analyse optical datacubes of the inner kiloparsec of 30 local ($zle0.02$) active galactic nuclei (AGN) hosts that our research group, AGNIFS, has collected over the past decade via observations with the integral field units of the Gemini Multi-Object Spectrographs. Spatial resolutions range between $50~{rm pc}$ and $300~{rm pc}$ and spectral coverage is from $4800~mathring{A}$ or $5600~mathring{A}$ to $7000~mathring{A}$, at velocity resolutions of $approx 50~{rm km~s^{-1}}$. We derive maps of the gas excitation and kinematics, determine the AGN ionisation axis -- which has random orientation relative to the galaxy, and the kinematic major axes of the emitting gas. We find that rotation dominates the gas kinematics in most cases, but is disturbed by the presence of inflows and outflows. Outflows have been found in 21 nuclei, usually along the ionisation axis. The gas velocity dispersion is traced by $W_{80}$ (velocity width encompassing 80 per cent of the line flux), adopted as a tracer of outflows. In 7 sources $W_{80}$ is enhanced perpendicularly to the ionisation axis, indicating lateral expansion of the outflow. We have estimated mass-outflow rates $dot{M}$ and powers $dot{E}$, finding median values of $log,[dot{M}/({rm,M_odot,yr^{-1}})]=-2.1_{-1.0}^{+1.6}$ and $log,[dot{E}/({rm,erg,s^{-1}})]=38.5_{-0.9}^{+1.8}$, respectively. Both quantities show a mild correlation with the AGN luminosity ($L_{rm AGN}$). $dot{E}$ is of the order of 0.01 $L_{rm AGN}$ for 4 sources, but much lower for the majority (9) of the sources, with a median value of $log,[dot{E}/L_{rm AGN}]=-5.34_{-0.9}^{+3.2}$ indicating that typical outflows in the local Universe are unlikely to significantly impact their host galaxy evolution.
We use the Gemini NIFS instrument to map the H$_2 2.1218mu$m and Br$gamma$ flux distributions in the inner 0.04-2 kpc of a sample of 36 nearby active galaxies ($0.001lesssim zlesssim0.056$) at spatial resolutions from 4 to 250 pc. We find extended emission in 34 galaxies. In $sim$55% of them, the emission in both lines is most extended along the galaxy major axis, while in the other 45% the extent follows a distinct orientation. The emission of H$_2$ is less concentrated than that of Br$gamma$, presenting a radius that contains half of the flux 60% greater, on average. The H$_2$ emission is driven by thermal processes - X-ray heating and shocks - at most locations for all galaxies, where $0.4<H_2/Brgamma<6$. For regions where H$_2$/Br$gamma>6$ (seen in 40% of the galaxies), shocks are the main H$_2$ excitation mechanism, while in regions with H$_2$/Br$gamma<0.4$ (25% of the sample) the H$_2$ emission is produced by fluorescence. The only difference we found between type 1 and type 2 AGN was in the nuclear emission-line equivalent widths, that are smaller in type 1 than in type 2 due to a larger contribution to the continuum from the hot dusty torus in the former. The gas masses in the inner 125 pc radius are in the range $10^1-10^4$ M$_odot$ for the hot H$_2$ and $10^3-10^6$ M$_odot$ for the ionised gas and would be enough to power the AGN in our sample for $10^5-10^8$ yr at their current accretion rates.
We report new detections and limits from a NOEMA and ALMA CO(1-0) search for molecular outflows in 13 local galaxies with high FIR surface brightness, and combine with results from the literature. CO line ratios and outflow structure provide some constraints on the conversion from observables to quantities such as molecular mass outflow rates. Ratios between outflow emission in higher J CO transitions and in CO(1-0) typically are consistent with excitation Ri1<~1. For IRAS 13120-5453, however, R31=2.10 indicates optically thin CO in the outflow. Like much of the outflow literature, we use alpha(CO) = 0.8, and we present arguments for using C=1 in deriving molecular mass outflow rates Mdot = C*M*v/R. We compare the two main methods for molecular outflow detection: CO mm interferometry and Herschel OH spectroscopy. For 26 sources studied with both methods, we find 80% agreement in detecting vout>~150km/s outflows, and non-matches can be plausibly ascribed to outflow geometry and SNR. For 12 bright ULIRGs with detailed OH-based outflow modeling, CO outflows are detected in all but one. Outflow masses, velocities, and sizes for these 11 sources agree well between the two methods, and modest remaining differences may relate to the different but overlapping regions sampled by CO emission and OH absorption. Outflow properties correlate better with AGN luminosity and with bolometric luminosity than with FIR surface brightness. The most massive outflows are found for systems with current AGN activity, but significant outflows in non-AGN systems must relate to star formation or to AGN activity in the recent past. We report scaling relations for the increase of outflow mass, rate, momentum rate, and kinetic power with bolometric luminosity. Short ~10^6yr flow times and some sources with resolved multiple outflow episodes support a role of intermittent driving, likely by AGN. (abridged)
We present two-dimensional stellar and gaseous kinematics of the inner 0.7 $times$ 1.2 kpc$^{2}$ of the Seyfert galaxy ESO 362-G18, derived from optical spectra obtained with the GMOS/IFU on the Gemini South telescope at a spatial resolution of $approx$170 pc and spectral resolution of 36 km s$^{-1}$. ESO 362-G18 is a strongly perturbed galaxy of morphological type Sa or S0/a, with a minor merger approaching along the NE direction. Previous studies have shown that the [OIII] emission shows a fan-shaped extension of $approx$ 10arcsec to the SE. We detect the [OIII] doublet, [NII] and H${alpha}$ emission lines throughout our field of view. The stellar kinematics is dominated by circular motions in the galaxy plane, with a kinematic position angle of $approx$137$^{circ}$. The gas kinematics is also dominated by rotation, with kinematic position angles ranging from 122$^{circ}$ to 139$^{circ}$. A double-Gaussian fit to the [OIII]$lambda$5007 and H${alpha}$ lines, which have the highest signal to noise ratios of the emission lines, reveal two kinematic components: (1) a component at lower radial velocities which we interpret as gas rotating in the galactic disk; and (2) a component with line of sight velocities 100-250 km s$^{-1}$ higher than the systemic velocity, interpreted as originating in the outflowing gas within the AGN ionization cone. We estimate a mass outflow rate of 7.4 $times$ 10$^{-2}$ M$_{odot}$ yr$^{-1}$ in the SE ionization cone (this rate doubles if we assume a biconical configuration), and a mass accretion rate on the supermassive black hole (SMBH) of 2.2 $times$ 10$^{-2}$ M$_{odot}$ yr$^{-1}$. The total ionized gas mass within $sim$84 pc of the nucleus is 3.3 $times$ 10$^{5}$ M$_{odot}$; infall velocities of $sim$34 km s$^{-1}$ in this gas would be required to feed both the outflow and SMBH accretion.
We report on the determination of electron densities, and their impact on the outflow masses and rates, measured in the central few hundred parsecs of 11 local luminous active galaxies. We show that the peak of the integrated line emission in the AGN is significantly offset from the systemic velocity as traced by the stellar absorption features, indicating that the profiles are dominated by outflow. In contrast, matched inactive galaxies are characterised by a systemic peak and weaker outflow wing. We present three independent estimates of the electron density in these AGN, discussing the merits of the different methods. The electron density derived from the [SII] doublet is significantly lower than than that found with a method developed in the last decade using auroral and transauroral lines, as well as a recently introduced method based on the ionization parameter. The reason is that, for gas photoionized by an AGN, much of the [SII] emission arises in an extended partially ionized zone where the implicit assumption that the electron density traces the hydrogen density is invalid. We propose ways to deal with this situation and we derive the associated outflow rates for ionized gas, which are in the range 0.001--0.5 M$_{odot}$yr$^{-1}$ for our AGN sample. We compare these outflow rates to the relation between $dot{M}_{out}$ and $L_{AGN}$ in the literature, and argue that it may need to be modified and rescaled towards lower mass outflow rates.
We present Gemini GMOS-IFU data of eight compact low-mass early-type galaxies (ETGs) in the Virgo cluster. We analyse their stellar kinematics, stellar population, and present two-dimensional maps of these properties covering the central 5x 7 region. We find a large variety of kinematics: from non- to highly-rotating objects, often associated with underlying disky isophotes revealed by deep images from the Next Generation Virgo Cluster Survey. In half of our objects, we find a centrally-concentrated younger and more metal-rich stellar population. We analyze the specific stellar angular momentum through the lambdaR parameter and find six fast-rotators and two slow-rotators, one having a thin counter-rotating disk. We compare the local galaxy density and stellar populations of our objects with those of 39 more extended low-mass Virgo ETGs from the SMAKCED survey and 260 massive ($M>10^{10}$Msun) ETGs from the A3D sample. The compact low-mass ETGs in our sample are located in high density regions, often close to a massive galaxy and have, on average, older and more metal-rich stellar populations than less compact low-mass galaxies. We find that the stellar population parameters follow lines of constant velocity dispersion in the mass-size plane, smoothly extending the comparable trends found for massive ETGs. Our study supports a scenario where low-mass compact ETGs have experienced long-lived interactions with their environment, including ram-pressure stripping and gravitational tidal forces, that may be responsible for their compact nature.