Do you want to publish a course? Click here

Transient Higgs oscillations and high-order nonlinear light-Higgs coupling in terahertz-wave drivenNbN superconductor

92   0   0.0 ( 0 )
 Added by Zixiao Wang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the nonlinear optical response in a superconducting NbN thin film with strong terahertz (THz)wave. Besides the expected third harmonic generation, we observe a new transient oscillation which softensin frequency with temperature increasing towards superconducting transition temperatureTc. We identify thisnew mode as the Higgs transient oscillation. To verify this proposal, we introduce a time-frequency resolvedtechnique, named spectrogram for visualizing THz spectrum. The dynamic decaying behavior of the mode isobserved, which is consistent with theoretical expectation about intrinsic Higgs oscillation. Moreover, a higherorder nonlinear optics effect,i.e.fifth harmonic generation, has been observed for the first time, which we assignto the higher order coupling between Higgs mode and electromagn



rate research

Read More

Despite being usually considered two competing phenomena, charge-density-wave and superconductivity coexist in few systems, the most emblematic one being the transition metal dichalcogenide 2H-NbSe$_2$. This unusual condition is responsible for specific Raman signatures across the two phase transitions in this compound. While the appearance of a soft phonon mode is a well-established fingerprint of the charge-density-wave order, the nature of the sharp sub-gap mode emerging below the superconducting temperature is still under debate. In this work we use the external pressure as a knob to unveil the delicate interplay between the two orders, and consequently the nature of the superconducting mode. Thanks to an advanced extreme-conditions Raman technique we are able to follow the pressure evolution and the simultaneous collapse of the two intertwined charge density wave and superconducting modes. The comparison with microscopic calculations in a model system supports the Higgs-type nature of the superconducting mode and suggests that charge-density-wave and superconductivity in 2H-NbSe$_2$ involve mutual electronic degrees of freedom. These findings fill knowledge gap on the electronic mechanisms at play in transition metal dichalcogenides, a crucial step to fully exploit their properties in few-layers systems optimized for devices applications.
The quest for new functionalities in quantum materials has recently been extended to non-equilibrium states, which are interesting both because they exhibit new physical phenomena and because of their potential for high-speed device applications. Notable advances have been made in the creation of metastable phases and in Floquet engineering under external periodic driving. In the context of non-equilibrium superconductivity, examples have included the generation of transient superconductivity above the thermodynamic transition temperature, the excitation of coherent Higgs mode oscillations, and the optical control of the interlayer phase in cuprates. Here, we propose theoretically a novel non-equilibrium phenomenon, through which a prompt quench from a metal to a transient superconducting state could induce large oscillations of the order parameter amplitude. We argue that this oscillating mode could act as a source of parametric amplification of the incident radiation. We report experimental results on optically driven K$_3$C$_{60}$ that are consistent with these predictions. The effect is found to disappear when the onset of the excitation becomes slower than the Higgs mode period, consistent with the theory proposed here. These results open new possibilities for the use of collective modes in many-body systems to induce non-linear optical effects.
108 - Ryo Shimano , Naoto Tsuji 2019
When a continuous symmetry of a physical system is spontaneously broken, two types of collective modes typically emerge: the amplitude and phase modes of the order-parameter fluctuation. For superconductors, the amplitude mode is recently referred to as the Higgs mode as it is a condensed-matter analogue of a Higgs boson in particle physics. Higgs mode is a scalar excitation of the order parameter, distinct from charge or spin fluctuations, and thus does not couple to electromagnetic fields linearly. This is why the Higgs mode in superconductors has evaded experimental observations over a half century after the initial theoretical prediction, except for a charge-density-wave coexisting system. With the advance of nonlinear and time-resolved terahertz spectroscopy techniques, however, it has become possible to study the Higgs mode through the nonlinear light-Higgs coupling. In this review, we overview recent progresses on the study of the Higgs mode in superconductors.
The competing orders in the particle-particle (P-P) channel and the particle-hole (P-H) channel have been proposed separately to explain the pseudogap physics in cuprates. By solving the Bogoliubov-deGennes equation self-consistently, we show that there is a general complementary connection between the d-wave checkerboard order (DWCB) in the particle-hole (P-H) channel and the pair density wave order (PDW) in the particle-particle (P-P) channel. A small pair density localization generates DWCB and PDW orders simultaneously. The result suggests that suppressing superconductivity locally or globally through phase fluctuation should induce both orders in underdoped cuprates. The presence of both DWCB and PDW orders with $4a times 4a$ periodicity can explain the checkerboard modulation observed in FT-STS from STM and the puzzling dichotomy between the nodal and antinodal regions as well as the characteristic features such as non-dispersive Fermi arc in the pseudogap state.
The pressure evolution of the Raman active electronic excitations of the transition metal dichalcogenides 2H-TaS$_2$ is followed through the pressure phase diagram embedding incommensurate charge-density-wave and superconducting states. At high pressure, the charge-density-wave is found to collapse at 8.5~GPa. In the coexisting charge-density-wave and superconducting orders, we unravel a strong in-gap superconducting mode, attributed to a Higgs mode, coexisting with the expected incoherent Cooper-pair breaking signature. The latter remains in the pure superconducting state reached above 8.5~GPa. Our report constitutes the first observation of such Raman active Higgs mode since the longstanding unique case 2H-NbSe$_2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا