Do you want to publish a course? Click here

Homological regularities and concavities

63   0   0.0 ( 0 )
 Added by Robert Won
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

This paper concerns homological notions of regularity for noncommutative algebras. Properties of an algebra $A$ are reflected in the regularities of certain (complexes of) $A$-modules. We study the classical Tor-regularity and Castelnuovo-Mumford regularity, which were generalized from the commutative setting to the noncommutative setting by J{o}rgensen and Dong-Wu. We also introduce two new numerical homological invariants: concavity and Artin-Schelter regularity. Artin-Schelter regular algebras occupy a central position in noncommutative algebra and noncommutative algebraic geometry, and we use these invariants to establish criteria which can be used to determine whether a noetherian connected graded algebra is Artin-Schelter regular.



rate research

Read More

100 - X.-F. Mao , X.-D. Gao , Y.-N. Yang 2017
In this paper, we introduce and study differential graded (DG for short) polynomial algebras. In brief, a DG polynomial algebra $mathcal{A}$ is a connected cochain DG algebra such that its underlying graded algebra $mathcal{A}^{#}$ is a polynomial algebra $mathbb{k}[x_1,x_2,cdots, x_n]$ with $|x_i|=1$, for any $iin {1,2,cdots, n}$. We describe all possible differential structures on DG polynomial algebras; compute their DG automorphism groups; study their isomorphism problems; and show that they are all homologically smooth and Gorestein DG algebras. Furthermore, it is proved that the DG polynomial algebra $mathcal{A}$ is a Calabi-Yau DG algebra when its differential $partial_{mathcal{A}} eq 0$ and the trivial DG polynomial algebra $(mathcal{A}, 0)$ is Calabi-Yau if and only if $n$ is an odd integer.
In this paper, we introduce and study e-injective semimodules, in particular over additively idempotent semirings. We completely characterize semirings all of whose semimodules are e-injective, describe semirings all of whose projective semimodules are e-injective, and characterize one-sided Noetherian rings in terms of direct sums of e-injective semimodules. Also, we give complete characterizations of bounded distributive lattices, subtractive semirings, and simple semirings, all of whose cyclic (finitely generated) semimodules are e-injective.
202 - Rongmin Zhu , Zhongkui Liu , 2014
Let $A$ and $B$ be rings, $U$ a $(B, A)$-bimodule and $T=left(begin{smallmatrix} A & 0 U & B end{smallmatrix}right)$ be the triangular matrix ring. In this paper, we characterize the Gorenstein homological dimensions of modules over $T$, and discuss when a left $T$-module is strongly Gorenstein projective or strongly Gorenstein injective module.
For a monomial ideal $I$, we consider the $i$th homological shift ideal of $I$, denoted by $text{HS}_i(I)$, that is, the ideal generated by the $i$th multigraded shifts of $I$. Some algebraic properties of this ideal are studied. It is shown that for any monomial ideal $I$ and any monomial prime ideal $P$, $text{HS}_i(I(P))subseteq text{HS}_i(I)(P)$ for all $i$, where $I(P)$ is the monomial localization of $I$. In particular, we consider the homological shift ideal of some families of monomial ideals with linear quotients. For any $textbf{c}$-bounded principal Borel ideal $I$ and for the edge ideal of complement of any path graph, it is proved that $text{HS}_i(I)$ has linear quotients for all $i$. As an example of $textbf{c}$-bounded principal Borel ideals, Veronese type ideals are considered and it is shown that the homological shift ideal of these ideals are polymatroidal. This implies that for any polymatroidal ideal which satisfies the strong exchange property, $text{HS}_j(I)$ is again a polymatroidal ideal for all $j$. Moreover, for any edge ideal with linear resolution, the ideal $text{HS}_j(I)$ is characterized and it is shown that $text{HS}_1(I)$ has linear quotients.
Quantum codes with low-weight stabilizers known as LDPC codes have been actively studied recently due to their simple syndrome readout circuits and potential applications in fault-tolerant quantum computing. However, all families of quantum LDPC codes known to this date suffer from a poor distance scaling limited by the square-root of the code length. This is in a sharp contrast with the classical case where good families of LDPC codes are known that combine constant encoding rate and linear distance. Here we propose the first family of good quantum codes with low-weight stabilizers. The new codes have a constant encoding rate, linear distance, and stabilizers acting on at most $sqrt{n}$ qubits, where $n$ is the code length. For comparison, all previously known families of good quantum codes have stabilizers of linear weight. Our proof combines two techniques: randomized constructions of good quantum codes and the homological product operation from algebraic topology. We conjecture that similar methods can produce good stabilizer codes with stabilizer weight $n^a$ for any $a>0$. Finally, we apply the homological product to construct new small codes with low-weight stabilizers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا