Do you want to publish a course? Click here

Toward Homological Characterization of Semirings by e-Injective Semimodules

89   0   0.0 ( 0 )
 Added by Tran Giang Nam
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we introduce and study e-injective semimodules, in particular over additively idempotent semirings. We completely characterize semirings all of whose semimodules are e-injective, describe semirings all of whose projective semimodules are e-injective, and characterize one-sided Noetherian rings in terms of direct sums of e-injective semimodules. Also, we give complete characterizations of bounded distributive lattices, subtractive semirings, and simple semirings, all of whose cyclic (finitely generated) semimodules are e-injective.



rate research

Read More

In this paper, we introduce and study V- and CI-semirings---semirings all of whose simple and cyclic, respectively, semimodules are injective. We describe V-semirings for some classes of semirings and establish some fundamental properties of V-semirings. We show that all Jacobson-semisimple V-semirings are V-rings. We also completely describe the bounded distributive lattices, Gelfand, subtractive, semisimple, and anti-bounded, semirings that are CI-semirings. Applying these results, we give complete characterizations of congruence-simple subtractive and congruence-simple anti-bounded CI-semirings which solve two earlier open problems for these classes of CI-semirings.
Injective modules play an important role in characterizing different classes of rings (e.g. Noetherian rings, semisimple rings). Some semirings have no non-zero injective semimodules (e.g. the semiring of non-negative integers). In this paper, we study some of the basic properties of the so called e-injective semimodules introduced by the first author using a new notion of exact sequences of semimodules. We clarify the relationships between the injective semimodules, the e-injective semimodule, and the i-injective semimodules through several implications, examples and counter examples. Moreover, we provide partial results for the so called Embedding Problem (of semimodules in injective semimodules).
Flat modules play an important role in the study of the category of modules over rings and in the characterization of some classes of rings. We study the e-flatness for semimodules introduced by the first author using his new notion of exact sequences of semimodules and its relationships with other notions of flatness for semimodules over semirings. We also prove that a subtractive semiring over which every right (left) semimodule is e-flat is a von Neumann regular semiring.
Projective modules play an important role in the study of the category of modules over rings and in the characterization of various classes of rings. Several characterizations of projective objects which are equivalent for modules over rings are not necessarily equivalent for semimodules over an arbitrary semiring. We study several of these notions, in particular the e-projective semimodules introduced by the first author using his new notion of exact sequences of semimodules. As pushouts of semimodules play an important role in some of our proofs, we investigate them and give a constructive proof of their existence in a way that proved be very helpful.
We investigate ideal-semisimple and congruence-semisimple semirings. We give several new characterizations of such semirings using e-projective and e-injective semimodules. We extend several characterizations of semisimple rings to (not necessarily subtractive) commutative semirings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا