Do you want to publish a course? Click here

Conservation of Angular Momentum in the Fast Multipole Method

61   0   0.0 ( 0 )
 Added by Oleg Korobkin
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Smoothed particle hydrodynamics (SPH) is positioned as having ideal conservation properties. When properly implemented, conservation of total mass, energy, and both linear and angular momentum is guaranteed exactly, up to machine precision. This is particularly important for some applications in computational astrophysics, such as binary dynamics, mergers, and accretion of compact objects (neutron stars, black holes, and white dwarfs). However, in astrophysical applications that require the inclusion of gravity, calculating pairwise particle interactions becomes prohibitively expensive. In the Fast Multipole Method (FMM), they are, therefore, replaced with symmetric interactions between distant clusters of particles (contained in the tree nodes) Although such an algorithm is linear momentum-conserving, it introduces spurious torques that violate conservation of angular momentum. We present a modification of FMM that is free of spurious torques and conserves angular momentum explicitly. The new method has practically no computational overhead compared to the standard FMM.



rate research

Read More

Exact conservation of the angular momentum is worked out for an elastic medium with spins. The intrinsic anharmonicity of the elastic theory is shown to be crucial for conserving the total momentum. As a result, any spin-lattice dynamics inevitably involves multiphonon processes and interaction between phonons. This makes transitions between spin states in a solid fundamentally different from transitions between atomic states in vacuum governed by linear electrodynamics. Consequences for using solid-state spins as qubits are discussed.
We present here a minor modification of our numerical implementation of the Hall effect for the 2D Riemann solver used in Constrained Transport schemes, as described in Marchand et al. (2018). In the previous work, the tests showed that the angular momentum was not conserved during protostellar collapse simulations, with significant impact. By removing the whistler waves speed from the characteristic speeds of non-magnetic variables in the 1D Riemann solver, we are able to improve the angular momentum conservation in our test-case by one order of magnitude, while keeping the second-order numerical convergence of the scheme. We also reproduce the simulations of Tsukamoto et al. (2015) with consistent resistivities, the three non-ideal MHD effects and initial rotation, and agree with their results. In this case, the violation of angular momentum conservation is negligible in regard to the total angular momentum and the angular momentum of the disk.
Superfluid vortices are quantum excitations carrying quantized amount of orbital angular momentum in a phase where global symmetry is spontaneously broken. We address a question of whether magnetic vortices in superconductors with dynamical gauge fields can carry nonzero orbital angular momentum or not. We discuss the angular momentum conservation in several distinct classes of examples from crossdisciplinary fields of physics across condensed matter, dense nuclear systems, and cosmology. The angular momentum carried by gauge field configurations around the magnetic vortex plays a crucial role in satisfying the principle of the conservation law. Based on various ways how the angular momentum conservation is realized, we provide a general scheme of classifying magnetic vortices in different phases of matter.
We analyze the laws of conservation of momentum and angular momentum in classical electrodynamics of material media with bound charges, and explore the possibility to describe the properties of such media via a discrete set of point-like charges of zero size (as imposed by special relativity), and via continuous charge/current distributions. This way we put a question: do we have to recognize the infinite fields at the location of elementary charges as the essential physical requirement, or such infinite fields can be ignored via introduction of continuous charge distribution? In order to answer this question, we consider the interaction of a homogeneously charged insulating plate with a compact magnetic dipole, moving along the plate. We arrive at the apparent violation of the angular momentum conservation law and show that this law is re-covered, when the electric field at the location of each elementary charge of the plate is taken infinite. This result signifies that the description of electromagnetic properties of material media via the continuous charge and current distributions is not a universal approximation, and at the fundamental level, we have to deal with a system of elementary discrete charges of zero size, at least in the analysis of laws of conservation of momentum and angular momentum.
227 - Cheng Qian , Mingyu Wang , 2021
Tucker decomposition is proposed to reduce the memory requirement of the far-fields in the fast multipole method (FMM)-accelerated surface integral equation simulators. It is particularly used to compress the far-fields of FMM groups, which are stored in three-dimensional (3-D) arrays (or tensors). The compressed tensors are then used to perform fast tensor-vector multiplications during the aggregation and disaggregation stages of the FMM. For many practical scenarios, the proposed Tucker decomposition yields a significant reduction in the far-fields memory requirement while dramatically accelerating the aggregation and disaggregation stages. For the electromagnetic scattering analysis of a 30{lambda}-diameter sphere, it reduces the memory requirement of the far-fields more than 87% while it expedites the aggregation and disaggregation stages by a factor of 15.8 and 15.2, respectively, where {lambda} is the wavelength in free space.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا