Do you want to publish a course? Click here

Surgical Instruction Generation with Transformers

230   0   0.0 ( 0 )
 Added by Jinglu Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Automatic surgical instruction generation is a prerequisite towards intra-operative context-aware surgical assistance. However, generating instructions from surgical scenes is challenging, as it requires jointly understanding the surgical activity of current view and modelling relationships between visual information and textual description. Inspired by the neural machine translation and imaging captioning tasks in open domain, we introduce a transformer-backboned encoder-decoder network with self-critical reinforcement learning to generate instructions from surgical images. We evaluate the effectiveness of our method on DAISI dataset, which includes 290 procedures from various medical disciplines. Our approach outperforms the existing baseline over all caption evaluation metrics. The results demonstrate the benefits of the encoder-decoder structure backboned by transformer in handling multimodal context.



rate research

Read More

Telementoring surgeons as they perform surgery can be essential in the treatment of patients when in situ expertise is not available. Nonetheless, expert mentors are often unavailable to provide trainees with real-time medical guidance. When mentors are unavailable, a fallback autonomous mechanism should provide medical practitioners with the required guidance. However, AI/autonomous mentoring in medicine has been limited by the availability of generalizable prediction models, and surgical procedures datasets to train those models with. This work presents the initial steps towards the development of an intelligent artificial system for autonomous medical mentoring. Specifically, we present the first Database for AI Surgical Instruction (DAISI). DAISI leverages on images and instructions to provide step-by-step demonstrations of how to perform procedures from various medical disciplines. The dataset was acquired from real surgical procedures and data from academic textbooks. We used DAISI to train an encoder-decoder neural network capable of predicting medical instructions given a current view of the surgery. Afterwards, the instructions predicted by the network were evaluated using cumulative BLEU scores and input from expert physicians. According to the BLEU scores, the predicted and ground truth instructions were as high as 67% similar. Additionally, expert physicians subjectively assessed the algorithm using Likert scale, and considered that the predicted descriptions were related to the images. This work provides a baseline for AI algorithms to assist in autonomous medical mentoring.
A set is an unordered collection of unique elements--and yet many machine learning models that generate sets impose an implicit or explicit ordering. Since model performance can depend on the choice of order, any particular ordering can lead to sub-optimal results. An alternative solution is to use a permutation-equivariant set generator, which does not specify an order-ing. An example of such a generator is the DeepSet Prediction Network (DSPN). We introduce the Transformer Set Prediction Network (TSPN), a flexible permutation-equivariant model for set prediction based on the transformer, that builds upon and outperforms DSPN in the quality of predicted set elements and in the accuracy of their predicted sizes. We test our model on MNIST-as-point-clouds (SET-MNIST) for point-cloud generation and on CLEVR for object detection.
In this paper we introduce OperA, a transformer-based model that accurately predicts surgical phases from long video sequences. A novel attention regularization loss encourages the model to focus on high-quality frames during training. Moreover, the attention weights are utilized to identify characteristic high attention frames for each surgical phase, which could further be used for surgery summarization. OperA is thoroughly evaluated on two datasets of laparoscopic cholecystectomy videos, outperforming various state-of-the-art temporal refinement approaches.
We address the task of indoor scene generation by generating a sequence of objects, along with their locations and orientations conditioned on a room layout. Large-scale indoor scene datasets allow us to extract patterns from user-designed indoor scenes, and generate new scenes based on these patterns. Existing methods rely on the 2D or 3D appearance of these scenes in addition to object positions, and make assumptions about the possible relations between objects. In contrast, we do not use any appearance information, and implicitly learn object relations using the self-attention mechanism of transformers. We show that our model design leads to faster scene generation with similar or improved levels of realism compared to previous methods. Our method is also flexible, as it can be conditioned not only on the room layout but also on text descriptions of the room, using only the cross-attention mechanism of transformers. Our user study shows that our generated scenes are preferred to the state-of-the-art FastSynth scenes 53.9% and 56.7% of the time for bedroom and living room scenes, respectively. At the same time, we generate a scene in 1.48 seconds on average, 20% faster than FastSynth.
Text-to-Image generation in the general domain has long been an open problem, which requires both a powerful generative model and cross-modal understanding. We propose CogView, a 4-billion-parameter Transformer with VQ-VAE tokenizer to advance this problem. We also demonstrate the finetuning strategies for various downstream tasks, e.g. style learning, super-resolution, text-image ranking and fashion design, and methods to stabilize pretraining, e.g. eliminating NaN losses. CogView (zero-shot) achieves a new state-of-the-art FID on blurred MS COCO, outperforms previous GAN-based models and a recent similar work DALL-E.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا