No Arabic abstract
Telementoring surgeons as they perform surgery can be essential in the treatment of patients when in situ expertise is not available. Nonetheless, expert mentors are often unavailable to provide trainees with real-time medical guidance. When mentors are unavailable, a fallback autonomous mechanism should provide medical practitioners with the required guidance. However, AI/autonomous mentoring in medicine has been limited by the availability of generalizable prediction models, and surgical procedures datasets to train those models with. This work presents the initial steps towards the development of an intelligent artificial system for autonomous medical mentoring. Specifically, we present the first Database for AI Surgical Instruction (DAISI). DAISI leverages on images and instructions to provide step-by-step demonstrations of how to perform procedures from various medical disciplines. The dataset was acquired from real surgical procedures and data from academic textbooks. We used DAISI to train an encoder-decoder neural network capable of predicting medical instructions given a current view of the surgery. Afterwards, the instructions predicted by the network were evaluated using cumulative BLEU scores and input from expert physicians. According to the BLEU scores, the predicted and ground truth instructions were as high as 67% similar. Additionally, expert physicians subjectively assessed the algorithm using Likert scale, and considered that the predicted descriptions were related to the images. This work provides a baseline for AI algorithms to assist in autonomous medical mentoring.
Automatic surgical instruction generation is a prerequisite towards intra-operative context-aware surgical assistance. However, generating instructions from surgical scenes is challenging, as it requires jointly understanding the surgical activity of current view and modelling relationships between visual information and textual description. Inspired by the neural machine translation and imaging captioning tasks in open domain, we introduce a transformer-backboned encoder-decoder network with self-critical reinforcement learning to generate instructions from surgical images. We evaluate the effectiveness of our method on DAISI dataset, which includes 290 procedures from various medical disciplines. Our approach outperforms the existing baseline over all caption evaluation metrics. The results demonstrate the benefits of the encoder-decoder structure backboned by transformer in handling multimodal context.
Hyperspectral imaging, also known as image spectrometry, is a landmark technique in geoscience and remote sensing (RS). In the past decade, enormous efforts have been made to process and analyze these hyperspectral (HS) products mainly by means of seasoned experts. However, with the ever-growing volume of data, the bulk of costs in manpower and material resources poses new challenges on reducing the burden of manual labor and improving efficiency. For this reason, it is, therefore, urgent to develop more intelligent and automatic approaches for various HS RS applications. Machine learning (ML) tools with convex optimization have successfully undertaken the tasks of numerous artificial intelligence (AI)-related applications. However, their ability in handling complex practical problems remains limited, particularly for HS data, due to the effects of various spectral variabilities in the process of HS imaging and the complexity and redundancy of higher dimensional HS signals. Compared to the convex models, non-convex modeling, which is capable of characterizing more complex real scenes and providing the model interpretability technically and theoretically, has been proven to be a feasible solution to reduce the gap between challenging HS vision tasks and currently advanced intelligent data processing models.
In this paper we introduce OperA, a transformer-based model that accurately predicts surgical phases from long video sequences. A novel attention regularization loss encourages the model to focus on high-quality frames during training. Moreover, the attention weights are utilized to identify characteristic high attention frames for each surgical phase, which could further be used for surgery summarization. OperA is thoroughly evaluated on two datasets of laparoscopic cholecystectomy videos, outperforming various state-of-the-art temporal refinement approaches.
Surgical tool presence detection and surgical phase recognition are two fundamental yet challenging tasks in surgical video analysis and also very essential components in various applications in modern operating rooms. While these two analysis tasks are highly correlated in clinical practice as the surgical process is well-defined, most previous methods tackled them separately, without making full use of their relatedness. In this paper, we present a novel method by developing a multi-task recurrent convolutional network with correlation loss (MTRCNet-CL) to exploit their relatedness to simultaneously boost the performance of both tasks. Specifically, our proposed MTRCNet-CL model has an end-to-end architecture with two branches, which share earlier feature encoders to extract general visual features while holding respective higher layers targeting for specific tasks. Given that temporal information is crucial for phase recognition, long-short term memory (LSTM) is explored to model the sequential dependencies in the phase recognition branch. More importantly, a novel and effective correlation loss is designed to model the relatedness between tool presence and phase identification of each video frame, by minimizing the divergence of predictions from the two branches. Mutually leveraging both low-level feature sharing and high-level prediction correlating, our MTRCNet-CL method can encourage the interactions between the two tasks to a large extent, and hence can bring about benefits to each other. Extensive experiments on a large surgical video dataset (Cholec80) demonstrate outstanding performance of our proposed method, consistently exceeding the state-of-the-art methods by a large margin (e.g., 89.1% v.s. 81.0% for the mAP in tool presence detection and 87.4% v.s. 84.5% for F1 score in phase recognition). The code can be found on our project website.
Language instruction plays an essential role in the natural language grounded navigation tasks. However, navigators trained with limited human-annotated instructions may have difficulties in accurately capturing key information from the complicated instruction at different timesteps, leading to poor navigation performance. In this paper, we exploit to train a more robust navigator which is capable of dynamically extracting crucial factors from the long instruction, by using an adversarial attacking paradigm. Specifically, we propose a Dynamic Reinforced Instruction Attacker (DR-Attacker), which learns to mislead the navigator to move to the wrong target by destroying the most instructive information in instructions at different timesteps. By formulating the perturbation generation as a Markov Decision Process, DR-Attacker is optimized by the reinforcement learning algorithm to generate perturbed instructions sequentially during the navigation, according to a learnable attack score. Then, the perturbed instructions, which serve as hard samples, are used for improving the robustness of the navigator with an effective adversarial training strategy and an auxiliary self-supervised reasoning task. Experimental results on both Vision-and-Language Navigation (VLN) and Navigation from Dialog History (NDH) tasks show the superiority of our proposed method over state-of-the-art methods. Moreover, the visualization analysis shows the effectiveness of the proposed DR-Attacker, which can successfully attack crucial information in the instructions at different timesteps. Code is available at https://github.com/expectorlin/DR-Attacker.