No Arabic abstract
As a key component of talking face generation, lip movements generation determines the naturalness and coherence of the generated talking face video. Prior literature mainly focuses on speech-to-lip generation while there is a paucity in text-to-lip (T2L) generation. T2L is a challenging task and existing end-to-end works depend on the attention mechanism and autoregressive (AR) decoding manner. However, the AR decoding manner generates current lip frame conditioned on frames generated previously, which inherently hinders the inference speed, and also has a detrimental effect on the quality of generated lip frames due to error propagation. This encourages the research of parallel T2L generation. In this work, we propose a novel parallel decoding model for high-speed and high-quality text-to-lip generation (HH-T2L). Specifically, we predict the duration of the encoded linguistic features and model the target lip frames conditioned on the encoded linguistic features with their duration in a non-autoregressive manner. Furthermore, we incorporate the structural similarity index loss and adversarial learning to improve perceptual quality of generated lip frames and alleviate the blurry prediction problem. Extensive experiments conducted on GRID and TCD-TIMIT datasets show that 1) HH-T2L generates lip movements with competitive quality compared with the state-of-the-art AR T2L model DualLip and exceeds the baseline AR model TransformerT2L by a notable margin benefiting from the mitigation of the error propagation problem; and 2) exhibits distinct superiority in inference speed (an average speedup of 19$times$ than DualLip on TCD-TIMIT).
In this paper, we propose a novel image interpolation algorithm, which is formulated via combining both the local autoregressive (AR) model and the nonlocal adaptive 3-D sparse model as regularized constraints under the regularization framework. Estimating the high-resolution image by the local AR regularization is different from these conventional AR models, which weighted calculates the interpolation coefficients without considering the rough structural similarity between the low-resolution (LR) and high-resolution (HR) images. Then the nonlocal adaptive 3-D sparse model is formulated to regularize the interpolated HR image, which provides a way to modify these pixels with the problem of numerical stability caused by AR model. In addition, a new Split-Bregman based iterative algorithm is developed to solve the above optimization problem iteratively. Experiment results demonstrate that the proposed algorithm achieves significant performance improvements over the traditional algorithms in terms of both objective quality and visual perception
Lip reading aims to recognize text from talking lip, while lip generation aims to synthesize talking lip according to text, which is a key component in talking face generation and is a dual task of lip reading. In this paper, we develop DualLip, a system that jointly improves lip reading and generation by leveraging the task duality and using unlabeled text and lip video data. The key ideas of the DualLip include: 1) Generate lip video from unlabeled text with a lip generation model, and use the pseudo pairs to improve lip reading; 2) Generate text from unlabeled lip video with a lip reading model, and use the pseudo pairs to improve lip generation. We further extend DualLip to talking face generation with two additionally introduced components: lip to face generation and text to speech generation. Experiments on GRID and TCD-TIMIT demonstrate the effectiveness of DualLip on improving lip reading, lip generation, and talking face generation by utilizing unlabeled data. Specifically, the lip generation model in our DualLip system trained with only10% paired data surpasses the performance of that trained with the whole paired data. And on the GRID benchmark of lip reading, we achieve 1.16% character error rate and 2.71% word error rate, outperforming the state-of-the-art models using the same amount of paired data.
Audio-visual (AV) lip biometrics is a promising authentication technique that leverages the benefits of both the audio and visual modalities in speech communication. Previous works have demonstrated the usefulness of AV lip biometrics. However, the lack of a sizeable AV database hinders the exploration of deep-learning-based audio-visual lip biometrics. To address this problem, we compile a moderate-size database using existing public databases. Meanwhile, we establish the DeepLip AV lip biometrics system realized with a convolutional neural network (CNN) based video module, a time-delay neural network (TDNN) based audio module, and a multimodal fusion module. Our experiments show that DeepLip outperforms traditional speaker recognition models in context modeling and achieves over 50% relative improvements compared with our best single modality baseline, with an equal error rate of 0.75% and 1.11% on the test datasets, respectively.
Quality assessment plays a key role in creating and comparing video compression algorithms. Despite the development of a large number of new methods for assessing quality, generally accepted and well-known codecs comparisons mainly use the classical methods like PSNR, SSIM and new method VMAF. These methods can be calculated following different rules: they can use different frame-by-frame averaging techniques or different summation of color components. In this paper, a fundamental comparison of vario
Quality assessment of in-the-wild videos is a challenging problem because of the absence of reference videos and shooting distortions. Knowledge of the human visual system can help establish methods for objective quality assessment of in-the-wild videos. In this work, we show two eminent effects of the human visual system, namely, content-dependency and temporal-memory effects, could be used for this purpose. We propose an objective no-reference video quality assessment method by integrating both effects into a deep neural network. For content-dependency, we extract features from a pre-trained image classification neural network for its inherent content-aware property. For temporal-memory effects, long-term dependencies, especially the temporal hysteresis, are integrated into the network with a gated recurrent unit and a subjectively-inspired temporal pooling layer. To validate the performance of our method, experiments are conducted on three publicly available in-the-wild video quality assessment databases: KoNViD-1k, CVD2014, and LIVE-Qualcomm, respectively. Experimental results demonstrate that our proposed method outperforms five state-of-the-art methods by a large margin, specifically, 12.39%, 15.71%, 15.45%, and 18.09% overall performance improvements over the second-best method VBLIINDS, in terms of SROCC, KROCC, PLCC and RMSE, respectively. Moreover, the ablation study verifies the crucial role of both the content-aware features and the modeling of temporal-memory effects. The PyTorch implementation of our method is released at https://github.com/lidq92/VSFA.