Do you want to publish a course? Click here

High Quality Image Interpolation via Local Autoregressive and Nonlocal 3-D Sparse Regularization

98   0   0.0 ( 0 )
 Added by Jian Zhang
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a novel image interpolation algorithm, which is formulated via combining both the local autoregressive (AR) model and the nonlocal adaptive 3-D sparse model as regularized constraints under the regularization framework. Estimating the high-resolution image by the local AR regularization is different from these conventional AR models, which weighted calculates the interpolation coefficients without considering the rough structural similarity between the low-resolution (LR) and high-resolution (HR) images. Then the nonlocal adaptive 3-D sparse model is formulated to regularize the interpolated HR image, which provides a way to modify these pixels with the problem of numerical stability caused by AR model. In addition, a new Split-Bregman based iterative algorithm is developed to solve the above optimization problem iteratively. Experiment results demonstrate that the proposed algorithm achieves significant performance improvements over the traditional algorithms in terms of both objective quality and visual perception



rate research

Read More

As a key component of talking face generation, lip movements generation determines the naturalness and coherence of the generated talking face video. Prior literature mainly focuses on speech-to-lip generation while there is a paucity in text-to-lip (T2L) generation. T2L is a challenging task and existing end-to-end works depend on the attention mechanism and autoregressive (AR) decoding manner. However, the AR decoding manner generates current lip frame conditioned on frames generated previously, which inherently hinders the inference speed, and also has a detrimental effect on the quality of generated lip frames due to error propagation. This encourages the research of parallel T2L generation. In this work, we propose a novel parallel decoding model for high-speed and high-quality text-to-lip generation (HH-T2L). Specifically, we predict the duration of the encoded linguistic features and model the target lip frames conditioned on the encoded linguistic features with their duration in a non-autoregressive manner. Furthermore, we incorporate the structural similarity index loss and adversarial learning to improve perceptual quality of generated lip frames and alleviate the blurry prediction problem. Extensive experiments conducted on GRID and TCD-TIMIT datasets show that 1) HH-T2L generates lip movements with competitive quality compared with the state-of-the-art AR T2L model DualLip and exceeds the baseline AR model TransformerT2L by a notable margin benefiting from the mitigation of the error propagation problem; and 2) exhibits distinct superiority in inference speed (an average speedup of 19$times$ than DualLip on TCD-TIMIT).
Distributed visual analysis applications, such as mobile visual search or Visual Sensor Networks (VSNs) require the transmission of visual content on a bandwidth-limited network, from a peripheral node to a processing unit. Traditionally, a Compress-Then-Analyze approach has been pursued, in which sensing nodes acquire and encode the pixel-level representation of the visual content, that is subsequently transmitted to a sink node in order to be processed. This approach might not represent the most effective solution, since several analysis applications leverage a compact representation of the content, thus resulting in an inefficient usage of network resources. Furthermore, coding artifacts might significantly impact the accuracy of the visual task at hand. To tackle such limitations, an orthogonal approach named Analyze-Then-Compress has been proposed. According to such a paradigm, sensing nodes are responsible for the extraction of visual features, that are encoded and transmitted to a sink node for further processing. In spite of improved task efficiency, such paradigm implies the central processing node not being able to reconstruct a pixel-level representation of the visual content. In this paper we propose an effective compromise between the two paradigms, namely Hybrid-Analyze-Then-Compress (HATC) that aims at jointly encoding visual content and local image features. Furthermore, we show how a target tradeoff between image quality and task accuracy might be achieved by accurately allocating the bitrate to either visual content or local features.
Learning with noisy labels is an important and challenging task for training accurate deep neural networks. Some commonly-used loss functions, such as Cross Entropy (CE), suffer from severe overfitting to noisy labels. Robust loss functions that satisfy the symmetric condition were tailored to remedy this problem, which however encounter the underfitting effect. In this paper, we theoretically prove that textbf{any loss can be made robust to noisy labels} by restricting the network output to the set of permutations over a fixed vector. When the fixed vector is one-hot, we only need to constrain the output to be one-hot, which however produces zero gradients almost everywhere and thus makes gradient-based optimization difficult. In this work, we introduce the sparse regularization strategy to approximate the one-hot constraint, which is composed of network output sharpening operation that enforces the output distribution of a network to be sharp and the $ell_p$-norm ($ple 1$) regularization that promotes the network output to be sparse. This simple approach guarantees the robustness of arbitrary loss functions while not hindering the fitting ability. Experimental results demonstrate that our method can significantly improve the performance of commonly-used loss functions in the presence of noisy labels and class imbalance, and outperform the state-of-the-art methods. The code is available at https://github.com/hitcszx/lnl_sr.
Quality control (QC) in medical image analysis is time-consuming and laborious, leading to increased interest in automated methods. However, what is deemed suitable quality for algorithmic processing may be different from human-perceived measures of visual quality. In this work, we pose MR image quality assessment from an image reconstruction perspective. We train Bayesian CNNs using a heteroscedastic uncertainty model to recover clean images from noisy data, providing measures of uncertainty over the predictions. This framework enables us to divide data corruption into learnable and non-learnable components and leads us to interpret the predictive uncertainty as an estimation of the achievable recovery of an image. Thus, we argue that quality control for visual assessment cannot be equated to quality control for algorithmic processing. We validate this statement in a multi-task experiment combining artefact recovery with uncertainty prediction and grey matter segmentation. Recognising this distinction between visual and algorithmic quality has the impact that, depending on the downstream task, less data can be excluded based on ``visual quality reasons alone.
Existing blind image quality assessment (BIQA) methods are mostly designed in a disposable way and cannot evolve with unseen distortions adaptively, which greatly limits the deployment and application of BIQA models in real-world scenarios. To address this problem, we propose a novel Lifelong blind Image Quality Assessment (LIQA) approach, targeting to achieve the lifelong learning of BIQA. Without accessing to previous training data, our proposed LIQA can not only learn new distortions, but also mitigate the catastrophic forgetting of seen distortions. Specifically, we adopt the Split-and-Merge distillation strategy to train a single-head network that makes task-agnostic predictions. In the split stage, we first employ a distortion-specific generator to obtain the pseudo features of each seen distortion. Then, we use an auxiliary multi-head regression network to generate the predicted quality of each seen distortion. In the merge stage, we replay the pseudo features paired with pseudo labels to distill the knowledge of multiple heads, which can build the final regressed single head. Experimental results demonstrate that the proposed LIQA method can handle the continuous shifts of different distortion types and even datasets. More importantly, our LIQA model can achieve stable performance even if the task sequence is long.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا