Do you want to publish a course? Click here

Phase-manipulation-induced Majorana Mode and Braiding Realization in Iron-based Superconductor Fe(Te,Se)

288   0   0.0 ( 0 )
 Added by Ning Hao
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent experiment reported the evidence of dispersing one-dimensional Majorana mode trapped by the crystalline domain walls in FeSe0.45Te0.55. Here, we perform the first-principles calculationsto show that iron atoms in the domain wall spontaneously form the ferromagnetic order in line withorientation of the wall. The ferromagnetism can impose a $pi$ phase difference between the domain-wall-separated surface superconducting regimes under the appropriate thickness and magnetization of the wall. Accordingly, the topological surface superconducting state of FeSe$_{0.45}$Te$_{0.55}$ can give rise to one-dimensional Majorana modes bounded by the wall. More importantly, we further propose a topological phase battery junction in the form of FeSe$_{0.45}$Te$_{0.55}$/ferromagnet/FeSe$_{0.45}$Te$_{0.55}$, which can be adopted to create and fuse the Majorana zero modes through controlling the thickness or magnetization of the interior ferromagnetic barrier. The braiding and readout of Majorana zero modes can easily be realized by the designed device. Such topological phase battery junction has the potential application in the superconducting topological quantum computation.



rate research

Read More

158 - J.-X. Yin , Zheng Wu , J.-H. Wang 2014
A robust zero-energy bound state (ZBS) in a superconductor, such as a Majorana or Andreev bound state, is often a consequence of non-trivial topological or symmetry related properties, and can provide indispensable information about the superconducting state. Here we use scanning tunneling microscopy/spectroscopy to demonstrate, on the atomic scale, that an isotropic ZBS emerges at the randomly distributed interstitial excess Fe sites in the superconducting Fe(Te,Se). This ZBS is localized with a short decay length of ~ 10 {AA}, and surprisingly robust against a magnetic field up to 8 Tesla, as well as perturbations by neighboring impurities. We find no natural explanation for the observation of such a robust zero-energy bound state, indicating a novel mechanism of impurities or an exotic pairing symmetry of the iron-based superconductivity.
216 - T.J. Liu , X. Ke , B. Qian 2009
We have investigated the effect of Fe nonstoichiometry on properties of the Fe1+y(Te, Se) superconductor system by means of resistivity, Hall coefficient, magnetic susceptibility, and specific heat measurements. We find that the excess Fe at interstitial sites of the (Te, Se) layers not only suppresses superconductivity, but also results in a weakly localized electronic state. We argue that these effects originate from the magnetic coupling between the excess Fe and the adjacent Fe square planar sheets, which favors a short-range magnetic order.
264 - Wei Bao , Y. Qiu , Q. Huang 2008
Magnetic spin fluctuations is one candidate to produce the bosonic modes that mediate the superconductivity in the ferrous superconductors. Up until now, all of the LaOFeAs and BaFe2As2 structure types have simple commensurate magnetic ground states, as result of nesting Fermi surfaces. This type of spin-density-wave (SDW) magnetic order is known to be vulnerable to shifts in the Fermi surface when electronic densities are altered at the superconducting compositions. Superconductivity has more recently been discovered in alpha-Fe(Te,Se), whose electronically active antifluorite planes are isostructural to the FeAs layers found in the previous ferrous superconductors and share with them the same quasi-two-dimensional electronic structure. Here we report neutron scattering studies that reveal a unique complex incommensurate antiferromagnetic order in the parent compound alpha-FeTe. When the long-range magnetic order is suppressed by the isovalent substitution of Te with Se, short-range correlations survive in the superconducting phase.
Braiding Majorana zero modes is essential for fault-tolerant topological quantum computing. Iron-based superconductors with nontrivial band topology have recently emerged as a surprisingly promising platform for creating distinct Majorana zero modes in magnetic vortices in a single material and at relatively high temperatures. The magnetic field-induced Abrikosov vortex lattice makes it difficult to braid a set of Majorana zero modes or to study the coupling of a Majorana doublet due to overlapping wave functions. Here we report the observation of the proposed quantum anomalous vortex with integer quantized vortex core states and the Majorana zero mode induced by magnetic Fe adatoms deposited on the surface. We observe its hybridization with a nearby field-induced Majorana vortex in iron-based superconductor FeTe0.55Se0.45. We also observe vortex-free Yu-Shiba-Rusinov bound states at the Fe adatoms with a weaker coupling to the substrate, and discover a reversible transition between Yu-Shiba-Rusinov states and Majorana zero mode by manipulating the exchange coupling strength. The dual origin of the Majorana zero modes, from magnetic adatoms and external magnetic field, provides a new single-material platform for studying their interactions and braiding in superconductors bearing topological band structures.
327 - Lingyuan Kong , Hong Ding 2021
The vortex of iron-based superconductors is emerging as a promising platform for Majorana zero mode, owing to a magic integration among intrinsic vortex winding, non-trivial band topology, strong electron-electron correlations, high-Tc superconductivity and the simplification of single material. It overcomes many difficulties suffered in heterostructure-based Majorana platforms, including small topological gap, interfacial contamination, lattice imperfections, and etc. Isolated zero-bias peaks have been found in vortex of several iron-based superconductors. So far, studies from both experimental and theoretical aspects strongly indicate the realization of vortex Majorana zero mode, with a potential to be applied to topological quantum computation. By taking Fe(Te,Se) superconductor as an example, here we review original idea and research progress of Majorana zero modes in this new platform. After introducing the identifications of topological band structure and real zero modes in vortex, we summarize the physics behaviors of vortex Majorana zero modes systematically. Firstly, relying on the behavior of the zero mode wave function and evidence of quasiparticle poisoning, we analyze the mechanism of emergence of vortex Majorana zero modes. Secondly, assisted with some well-established theories, we elaborate the measurements on Majorana symmetry and topological nature of vortex Majorana zero modes. After that, we switch from quantum physics to quantum engineering, and analyze the performance of vortex Majorana zero mode under real circumstances, which may potentially benefit the exploration of practical applications in the future. This review follows the physics properties of vortex Majorana zero modes, especially emphasizes the link between phenomena and mechanisms. It provides a chance to bridge the gap between the well-established theories and the newly discovered iron home of Majoranas.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا