Do you want to publish a course? Click here

Design, simulation and characterization of integrated photonic spectrographs for Astronomy I: Generation-I AWG devices based on canonical layouts

60   0   0.0 ( 0 )
 Added by Andreas Stoll
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an experimental study on our first generation of custom-developed arrayed waveguide gratings (AWG) on silica platform for spectroscopic applications in near-infrared astronomy. We provide a comprehensive description of the design, numerical simulation and characterization of several AWG devices aimed at spectral resolving powers of 15,000 - 60,000 in the astronomical H-band. We evaluate the spectral characteristics of the fabricated devices in terms of insertion loss and estimated spectral resolving power and compare the results with numerical simulations. We estimate resolving powers of up to 18,900 from the output channel 3-dB transmission bandwidth. Based on the first characterization results, we select two candidate AWGs for further processing by removal of the output waveguide array and polishing the output facet to optical quality with the goal of integration as the primary diffractive element in a cross-dispersed spectrograph. We further study the imaging properties of the processed AWGs with regards to spectral resolution in direct imaging mode, geometry-related defocus aberration, and polarization sensitivity of the spectral image. We identify phase error control, birefringence control, and aberration suppression as the three key areas of future research and development in the field of high-resolution AWG-based spectroscopy in astronomy.



rate research

Read More

Integrated photonic spectrographs offer an avenue to extreme miniaturization of astronomical instruments, which would greatly benefit extremely large telescopes and future space missions. These devices first require optimization for astronomical applications, which includes design, fabrication and field-testing. Given the high costs of photonic fabrication, Multi-Project Wafer (MPW) SiN offerings, where a user purchases a portion of a wafer, provide a convenient and affordable avenue to develop this technology. In this work we study the potential of two commonly used SiN waveguide geometries by MPW foundries, i.e. square and rectangular profiles to determine how they affect the performance of mid-high resolution arrayed waveguide grating spectrometers around 1.5 $mu$m. Specifically, we present results from detailed simulations on the mode sizes, shapes, and polarization properties, and on the impact of phase errors on the throughput and cross talk as well as some laboratory results of coupling and propagation losses. From the MPW-run tolerances and our phase-error study, we estimate that an AWG with R $sim$ 10,000 can be developed with the MPW runs and even greater resolving power is achievable with more reliable, dedicated fabrication runs. Depending on the fabrication and design optimizations, it is possible to achieve throughputs $sim 60%$ using the SiN platform. Thus, we show that SiN MPW offerings are highly promising and will play a key role in integrated photonic spectrograph developments for astronomy.
Magnetooptical properties of magnetic photonic crystals have been investigated in the view of their possible applications for the modern integrated-optics devices. A transfer matrices formalism was expanded for the case of oblique light incidence on the periodic nanoscaled magnetic multilayered systems. Several new effects such as the Faraday effect dependence on the incidence angle and the tunability of the bandgap defect modes spectral location by external magnetic fields were found. Several possibilities of one-dimensional magnetic photonic crystals applications for the optical devices are discussed. Initial steps towards the practical implementation of the proposed devices are reported.
131 - M. Iuzzolino , A. Tozzi , N. Sanna 2014
Present telescopes and future extremely large telescopes make use of fiber-fed spectrographs to observe at optical and infrared wavelengths. The use of fibers largely simplifies the interfacing of the spectrograph to the telescope. At a high spectral resolution (R>50,000) the fibers can be used to achieve very high spectral accuracy. GIANO is an infrared (0.95-2.5mu m) high resolution (R=50,000) spectrometer[1] [2] [3] that was recently commissioned at the TNG telescope (La Palma). This instrument was designed and built for direct feeding from the telescope [4]. However, due to constraints imposed on the telescope interfacing during the pre-commissioning phase, it had to be positioned on the rotating building, far from the telescope focus. Therefore, a new interface to the telescope, based on IR-transmitting ZBLAN fibers with 85 mu m core, was developed. In this article we report the first, preliminary results of the effects of these fibers on the quality of the recorded spectra with GIANO and with a similar spectrograph that we set-up in the laboratory. The effects can be primarily associated to modal-noise (MN) that, in GIANO, is much more evident than in optical spectrometers, because of the much longer wavelengths.
103 - L. Labadie 2012
This article reports the advances on the development of mid-infrared integrated optics for stellar interferometry. The devices are fabricated by laser writing techniques on chalcogenide glasses. Laboratory characterizaton is reported and analyzed.
379 - Jingwen Ma , Xiang Xi , 2019
Valley pseudospin, a new degree of freedom in photonic lattices, provides an intriguing way to manipulate photons and enhance the robustness of optical networks. Here we experimentally demonstrated topological waveguiding, refracting, resonating, and routing of valley-polarized photons in integrated circuits. Specifically, we show that at the domain wall between photonic crystals of different topological valley phases, there exists a topologically protected valley kink state that is backscattering-free at sharp bends and terminals. We further harnessed these valley kink states for constructing high-Q topological photonic crystal cavities with tortuously shaped cavity geometries. We also demonstrated a novel optical routing scheme at an intersection of multiple valley kink states, where light splits counterintuitively due to the valley pseudospin of photons. These results will not only lead to robust optical communication and signal processing, but also open the door for fundamental research of topological photonics in areas such as lasing, quantum photon-pair generation, and optomechanics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا