Do you want to publish a course? Click here

Universal linear optics by programmable multimode interference

221   0   0.0 ( 0 )
 Added by Hugo Larocque
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a constructive algorithm for universal linear electromagnetic transformations between the $N$ input and $N$ output modes of a dielectric slab. The approach uses out-of-plane phase modulation programmed down to $N^2$ degrees of freedom. The total area of these modulators equals that of the entire slab: our scheme satisfies the minimum area constraint for programmable linear optical transformations. We also present error correction schemes that enable high-fidelity unitary transformations at large $N$. This ``programmable multimode interferometer (ProMMI) thus translates the algorithmic simplicity of Mach-Zehnder meshes into a holographically programmed slab, yielding DoF-limited compactness and error tolerance while eliminating the dominant sidewall-related optical losses and directional-coupler-related patterning challenges.



rate research

Read More

Linear optics underpins tests of fundamental quantum mechanics and computer science, as well as quantum technologies. Here we experimentally demonstrate the longstanding goal of a single reprogrammable optical circuit that is sufficient to implement all possible linear optical protocols up to the size of that circuit. Our six-mode universal system consists of a cascade of 15 Mach-Zehnder interferometers with 30 thermo-optic phase shifters integrated into a single photonic chip that is electrically and optically interfaced for arbitrary setting of all phase shifters, input of up to six photons and their measurement with a 12 single-photon detector system. We programmed this system to implement heralded quantum logic and entangling gates, boson sampling with verification tests, and six-dimensional complex Hadamards. We implemented 100 Haar random unitaries with average fidelity 0.999 $pm$ 0.001. Our system is capable of switching between these and any other linear optical protocol in seconds. These results point the way to applications across fundamental science and quantum technologies.
Reconfigurable quantum circuits are fundamental building blocks for the implementation of scalable quantum technologies. Their implementation has been pursued in linear optics through the engineering of sophisticated interferometers. While such optical networks have been successful in demonstrating the control of small-scale quantum circuits, scaling up to larger dimensions poses significant challenges. Here, we demonstrate a potentially scalable route towards reconfigurable optical networks based on the use of a multimode fibre and advanced wavefront-shaping techniques. We program networks involving spatial and polarisation modes of the fibre and experimentally validate the accuracy and robustness of our approach using two-photon quantum states. In particular, we illustrate the reconfigurability of our platform by emulating a tunable coherent absorption experiment. By demonstrating reliable reprogrammable linear transformations, with the prospect to scale, our results highlight the potential of complex media driven by wavefront shaping for quantum information processing.
Interference-fit joints are typically adopted to produce permanent assemblies among mechanical parts. The resulting contact pressure is generally used for element fixing or to allow load transmission. Nevertheless, some special designs take advantage of the contact pressure to induce desiderata deformation or to mitigate the stress field inside the structure. Biased interference fitting between a planar mirror and an external ring could be used to induce the required curvature to realize new adaptive lens for optical aberration correction. Recently, thermally-actuated deformable mirror on this principle based, was proposed and prototyped. Although the feasibility and utility of such innovative lens was demonstrated, no comprehensive theory was developed to describe mirror behaviour and predict their curvature. Nowadays, the use of approximated numerical approach, such as the finite element method, is the only way to study the interaction between biased and interference fitted bodies. The paper aims to give the theoretical background for the correct design of adaptive lens actuated by interference fitting. A new formulation for the curvature prediction is proposed and compared with finite element analysis and available experimental measurements.
70 - Elie Gouzien 2020
We develop a universal approach enabling the study of any multimode quantum optical system evolving under a quadratic Hamiltonian. Our strategy generalizes the standard symplectic analysis and permits the treatment of multimode systems even in situations where traditional theoretical methods cannot be applied. This enables the description and investigation of a broad variety of key-resources for experimental quantum optics, ranging from optical parametric oscillators, to silicon-based micro-ring resonator, as well as opto-mechanical systems.
On-chip optical interconnect has been widely accepted as a promising technology to realize future large-scale multiprocessors. Mode-division multiplexing (MDM) provides a new degree of freedom for optical interconnects to dramatically increase the link capacity. Present on-chip multimode devices are based on traditional wave-optics. Although large amount of computation and optimization are adopted to support more modes, mode-independent manipulation is still hard to be achieved due to severe mode dispersion. Here, we propose a universal solution to standardize the design of fundamental multimode building blocks, by introducing a geometrical-optics-like concept adopting waveguide width larger than the working wavelength. The proposed solution can tackle a group of modes at the same time with very simple processes, avoiding demultiplexing procedure and ensuring compact footprint. Compare to conventional schemes, it is scalable to larger mode channels without increasing the complexity and whole footprint. As a proof of concept, we demonstrate a set of multimode building blocks including crossing, bend, coupler and switches. Low losses of multimode waveguide crossing and bend are achieved, as well as ultra-low power consumption of the multimode switch is realized since it enables reconfigurable routing for a group of modes simultaneously. Our work promotes the multimode photonics research and makes the MDM technique more practical.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا