Do you want to publish a course? Click here

Higher-Order Topology in Monolayer FeSe

71   0   0.0 ( 0 )
 Added by Zhengfei Wang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Generally, the topological corner state in two-dimensional second-order topological insulator (2D SOTI) is equivalent to the well-known domain wall state, originated from the mass-inversion between two adjacent edges with phase shift of pi. In this work, go beyond this conventional physical picture, we report a fractional mass-kink induced 2D SOTI in monolayer FeSe with canted checkerboard antiferromagnetic (AFM) order by analytic model and first-principles calculations. The canted spin associated in-plane Zeeman field can gap out the quantum spin Hall edge state of FeSe, forming a fractional mass-kink with phase shift of pi/2 at the rectangular corner, and generating an in-gap topological corner state with fractional charge of e/4. Moreover, the topological corner state is robust to local perturbation, existing in both naturally and non-naturally cleaved corners, regardless of the edge orientation. Our results not only demonstrate a material system to realize the unique 2D AFM SOTI, but also pave a new way to design the higher-order topological states from fractional mass-kink with arbitrary phase shift, which are expected to draw immediate experimental attention.



rate research

Read More

Spectral measurements of boundary localized in-gap modes are commonly used to identify topological insulators via the bulk-boundary correspondence. This can be extended to high-order topological insulators for which the most striking feature is in-gap modes at boundaries of higher co-dimension, e.g. the corners of a 2D material. Unfortunately, this spectroscopic approach is not always viable since the energies of the topological modes are not protected and they can often overlap the bulk bands, leading to potential misidentification. Since the topology of a material is a collective product of all its eigenmodes, any conclusive indicator of topology must instead be a feature of its bulk band structure, and should not rely on specific eigen-energies. For many topological crystalline insulators the key topological feature is fractional charge density arising from the filled bulk bands, but measurements of charge distributions have not been accessible to date. In this work, we experimentally measure boundary-localized fractional charge density of two distinct 2D rotationally-symmetric metamaterials, finding 1/4 and 1/3 fractionalization. We then introduce a new topological indicator based on collective phenomenology that allows unambiguous identification of higher-order topology, even in the absence of in-gap states. Finally, we demonstrate the higher-order bulk-boundary correspondence associated with this fractional feature by using boundary deformations to spectrally isolate localized corner modes where they were previously unobservable.
The recent discoveries of higher-order topological insulators (HOTIs) have shifted the paradigm of topological materials, which was previously limited to topological states at boundaries of materials, to those at boundaries of boundaries, such as corners . So far, all HOTI realisations have assumed static equilibrium described by time-invariant Hamiltonians, without considering time-variant or nonequilibrium properties. On the other hand, there is growing interest in nonequilibrium systems in which time-periodic driving, known as Floquet engineering, can induce unconventional phenomena including Floquet topological phases and time crystals. Recent theories have attemped to combine Floquet engineering and HOTIs, but there has thus far been no experimental realisation. Here we report on the experimental demonstration of a two-dimensional (2D) Floquet HOTI in a three-dimensional (3D) acoustic lattice, with modulation along z axis serving as an effective time-dependent drive. Direct acoustic measurements reveal Floquet corner states that have time-periodic evolution, whose period can be even longer than the underlying drive, a feature previously predicted for time crystals. The Floquet corner states can exist alongside chiral edge states under topological protection, unlike previous static HOTIs. These results demonstrate the unique space-time dynamic features of Floquet higher-order topology.
Topological phases of matter have been extensively studied for their intriguing bulk and edge properties. Recently, higher-order topological insulators with boundary states that are two or more dimensions lower than the bulk states, have been proposed and investigated as novel states of matter. Previous implementations of higher-order topological insulators were based on two-dimensional (2D) systems in which 1D gapped edge states and 0D localized corner states were observed. Here we theoretically design and experimentally realize a 3D higher-order topological insulator in a sonic crystal with a large topological band gap. We observe the coexistence of third-, second- and first-order topological boundary states with codimension three, two and one, respectively, indicating a dimensional hierarchy of higher-order topological phenomena in 3D crystals. Our acoustic metamaterial goes beyond the descriptions of tight-binding model and possesses a band structure which automatically breaks the chiral symmetry, leading to the separation of bulk, surface, hinge and corner states. Our study opens a new route toward higher-order topological phenomena in three-dimensions and paves the way for topological wave trapping and manipulation in a hierarchy of dimensions in a single system.
119 - He Gao , Haoran Xue , Zhongming Gu 2020
Topological phases of matter are classified based on their Hermitian Hamiltonians, whose real-valued dispersions together with orthogonal eigenstates form nontrivial topology. In the recently discovered higher-order topological insulators (TIs), the bulk topology can even exhibit hierarchical features, leading to topological corner states, as demonstrated in many photonic and acoustic artificial materials. Naturally, the intrinsic loss in these artificial materials has been omitted in the topology definition, due to its non-Hermitian nature; in practice, the presence of loss is generally considered harmful to the topological corner states. Here, we report the experimental realization of a higher-order TI in an acoustic crystal, whose nontrivial topology is induced by deliberately introduced losses. With local acoustic measurements, we identify a topological bulk bandgap that is populated with gapped edge states and in-gap corner states, as the hallmark signatures of hierarchical higher-order topology. Our work establishes the non-Hermitian route to higher-order topology, and paves the way to exploring various exotic non-Hermiticity-induced topological phases.
The mathematical field of topology has become a framework to describe the low-energy electronic structure of crystalline solids. A typical feature of a bulk insulating three-dimensional topological crystal are conducting two-dimensional surface states. This constitutes the topological bulk-boundary correspondence. Here, we establish that the electronic structure of bismuth, an element consistently described as bulk topologically trivial, is in fact topological and follows a generalized bulk-boundary correspondence of higher-order: not the surfaces of the crystal, but its hinges host topologically protected conducting modes. These hinge modes are protected against localization by time-reversal symmetry locally, and globally by the three-fold rotational symmetry and inversion symmetry of the bismuth crystal. We support our claim theoretically and experimentally. Our theoretical analysis is based on symmetry arguments, topological indices, first-principle calculations, and the recently introduced framework of topological quantum chemistry. We provide supporting evidence from two complementary experimental techniques. With scanning-tunneling spectroscopy, we probe the unique signatures of the rotational symmetry of the one-dimensional states located at step edges of the crystal surface. With Josephson interferometry, we demonstrate their universal topological contribution to the electronic transport. Our work establishes bismuth as a higher-order topological insulator.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا