Do you want to publish a course? Click here

Experimental and theoretical characterization of a non-equilibrium steady state of a periodically driven qubit

94   0   0.0 ( 0 )
 Added by Kimmo Luoma
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Periodically driven dynamics of open quantum systems is very interesting because typically non-equilibrium steady state is reached, which is characterized by a non-vanishing current. In this work, we study time discrete and periodically driven dynamics experimentally for a single photon that its coupled to its environment. We develop a comprehensive theory which explains the experimental observations and offers an analytical characterization of the non-equilibrium steady states of the system. We demonstrate that the periodic driving and the properties of the environment can be engineered in such a way that there is asymptotically non-vanishing bidirectional information flow between the open system and the environment.

rate research

Read More

Laser trapped nanoparticles have been recently used as model systems to study fundamental relations holding far from equilibrium. Here we study, both experimentally and theoretically, a nanoscale silica sphere levitated by a laser in a low density gas. The center of mass motion of the particle is subjected, at the same time, to feedback cooling and a parametric modulation driving the system into a non-equilibrium steady state. Based on the Langevin equation of motion of the particle, we derive an analytical expression for the energy distribution of this steady state showing that the average and variance of the energy distribution can be controlled separately by appropriate choice of the friction, cooling and modulation parameters. Energy distributions determined in computer simulations and measured in a laboratory experiment agree well with the analytical predictions. We analyse the particle motion also in terms of the quadratures and find thermal squeezing depending on the degree of detuning.
116 - Utkarsh Mishra , R. Prabhu , 2017
We study the dynamics of microscopic quantum correlations, viz., bipartite entanglement and quantum discord between nearest neighbor sites, in Ising spin chain with a periodically varying external magnetic field along the transverse direction. Quantum correlations exhibit periodic revivals with the driving cycles in the finite-size chain. The time of first revival is proportional to the system size and is inversely proportional to the maximum group velocity of Floquet quasi-particles. On the other hand, the local quantum correlations in the infinite chain may get saturated to non-zero values after a sufficiently large number of driving cycles. Moreover, we investigate the convergence of local density matrices, from which the quantum correlations under study originate, towards the final steady-state density matrices as a function of driving cycles. We find that the geometric distance, $d$, between the reduced density matrices of non-equilibrium state and steady-state obeys a power-law scaling of the form $d sim n^{-B}$, where $n$ is the number of driving cycles and $B$ is the scaling exponent. The steady-state quantum correlations are studied as a function of time period of the driving field and are marked by the presence of prominent peaks in frequency domain. The steady-state features can be further understood by probing band structures of Floquet Hamiltonian and purity of the bipartite state between nearest neighbor sites. Finally, we compare the steady-state values of the local quantum correlations with that of the canonical Gibbs ensemble and infer about their canonical ergodic properties. Moreover, we identify generic features in the ergodic properties depending upon the quantum phases of the initial state and the pathway of repeated driving that may be within the same quantum phase or across two different equilibrium phases.
117 - B. Olmos , D. Yu , I. Lesanovsky 2013
The steady state of a driven dense ensemble of two-level atoms is determined from the competition of coherent laser excitation and decay that acts in a correlated way on several atoms simultaneously. We show that the presence of this non-local dissipation lifts the direct link between the density of excited atoms and the photon emission rate which is typically present when atoms decay independently. The non-locality disconnects these static and dynamic observables so that a dynamical transition in one does not necessarily imply a transition in the other. Furthermore, the collective nature of the quantum jump operators governing the non-local decay results in the formation of spatial coherence in the steady state which can be measured by analyzing solely global quantities - the photon emission rate and the density of excited atoms. The experimental realization of the system with strontium atoms in a lattice is discussed.
Full quantum state tomography is used to characterize the state of an ensemble based qubit implemented through two hyperfine levels in Pr3+ ions, doped into a Y2SiO5 crystal. We experimentally verify that single-qubit rotation errors due to inhomogeneities of the ensemble can be suppressed using the Roos-Moelmer dark state scheme. Fidelities above >90%, presumably limited by excited state decoherence, were achieved. Although not explicitly taken care of in the Roos-Moelmer scheme, it appears that also decoherence due to inhomogeneous broadening on the hyperfine transition is largely suppressed.
We find a rich variety of counterintuitive features in the steady states of a qubit array coupled to a dissipative source and sink at two arbitrary sites, using a master equation approach. We show there are setups where increasing the pump and loss rates establishes long-range coherence. At sufficiently strong dissipation, the source or sink effectively generates correlation between its neighboring sites, leading to a striking density-wave order for a class of resonant geometries. This effect can be used more widely to engineer nonequilibrium phases. We show the steady states are generically distinct for hard-core bosons and free fermions, and differ significantly from the ones found before in special cases. They are explained by generally applicable ansatzes for the long-time dynamics at weak and strong dissipation. Our findings are relevant for existing photonic setups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا