No Arabic abstract
Among the various key networks in the human body, the nervous system occupies central importance. The debilitating effects of spinal cord injuries (SCI) impact a significant number of people throughout the world, and to date, there is no satisfactory method to treat them. In this paper, we review the major treatment techniques for SCI that include promising solutions based on information and communication technology (ICT) and identify the key characteristics of such systems. We then introduce two novel ICT-based treatment approaches for SCI. The first proposal is based on neural interface systems (NIS) with enhanced feedback, where the external machines are interfaced with the brain and the spinal cord such that the brain signals are directly routed to the limbs for movement. The second proposal relates to the design of self-organizing artificial neurons (ANs) that can be used to replace the injured or dead biological neurons. Apart from SCI treatment, the proposed methods may also be utilized as enabling technologies for neural interface applications by acting as bio-cyber interfaces between the nervous system and machines. Furthermore, under the framework of Internet of Bio- Nano Things (IoBNT), experience gained from SCI treatment techniques can be transferred to nano communication research.
How dynamic interactions between nervous system regions in mammals performs online motor control remains an unsolved problem. Here we present a new approach using a minimal model comprising spinal cord, sensory and motor cortex, coupled by long connections that are plastic. It succeeds in learning how to perform reaching movements of a planar arm with 6 muscles in several directions from scratch. The model satisfies biological plausibility constraints, like neural implementation, transmission delays, local synaptic learning and continuous online learning. The model can go from motor babbling to reaching arbitrary targets in less than 10 minutes. However, because there is no cerebellum the movements are ataxic. As emergent properties, neural populations in motor cortex show directional tuning and oscillatory dynamics, and the spinal cord creates convergent force fields that add linearly. The model is extensible and may eventually lead to complete motor control simulation.
Graph-structured data are an integral part of many application domains, including chemoinformatics, computational biology, neuroimaging, and social network analysis. Over the last two decades, numerous graph kernels, i.e. kernel functions between graphs, have been proposed to solve the problem of assessing the similarity between graphs, thereby making it possible to perform predictions in both classification and regression settings. This manuscript provides a review of existing graph kernels, their applications, software plus data resources, and an empirical comparison of state-of-the-art graph kernels.
The advent of miniature biosensors has generated numerous opportunities for deploying wireless sensor networks in healthcare. However, an important barrier is that acceptance by healthcare stakeholders is influenced by the effectiveness of privacy safeguards for personal and intimate information which is collected and transmitted over the air, within and beyond these networks. In particular, these networks are progressing beyond traditional sensors, towards also using multimedia sensors, which raise further privacy concerns. Paradoxically, less research has addressed privacy protection, compared to security. Nevertheless, privacy protection has gradually evolved from being assumed an implicit by-product of security measures, and it is maturing into a research concern in its own right. However, further technical and socio-technical advances are needed. As a contribution towards galvanising further research, the hallmarks of this paper include: (i) a literature survey explicitly anchored on privacy preservation, it is underpinned by untangling privacy goals from security goals, to avoid mixing privacy and security concerns, as is often the case in other papers; (ii) a critical survey of privacy preservation services for wireless sensor networks in healthcare, including threat analysis and assessment methodologies; it also offers classification trees for the multifaceted challenge of privacy protection in healthcare, and for privacy threats, attacks and countermeasures; (iii) a discussion of technical advances complemented by reflection over the implications of regulatory frameworks; (iv) a discussion of open research challenges, leading onto offers of directions for future research towards unlocking the door onto privacy protection which is appropriate for healthcare in the twenty-first century.
The cerebrospinal fluid (CSF) constitutes an interface through which chemical cues can reach and modulate the activity of neurons located at the epithelial boundary within the entire nervous system. Here, we investigate the role and functional connectivity of a class of GABAergic sensory neurons contacting the CSF in the vertebrate spinal cord and referred to as CSF-cNs. The remote activation of CSF-cNs was shown to trigger delayed slow locomotion in the zebrafish larva, suggesting that these cells modulate components of locomotor central pattern generators (CPGs). Combining anatomy, electrophysiology, and optogenetics in vivo, we show that CSF-cNs form active GABAergic synapses onto V0-v glutamatergic interneurons, an essential component of locomotor CPGs. We confirmed that activating CSF-cNs at rest induced delayed slow locomotion in the fictive preparation. In contrast, the activation of CSF-cNs promptly inhibited ongoing slow locomotion. Moreover, selective activation of rostral CSF-cNs during ongoing activity disrupted rostrocaudal propagation of descending excitation along the spinal cord, indicating that CSF-cNs primarily act at the premotor level. Altogether, our results demonstrate how a spinal GABAergic sensory neuron can tune the excitability of locomotor CPGs in a state-dependent manner by projecting onto essential components of the excitatory premotor pool.
The engineering community is witnessing a new frontier in the communication industry. Among others, the tools provided by nanotechnologies enable the development of novel nanosensors and nanomachines. On the one hand, nanosensors are capable of detecting events with unprecedented accuracy. On the other hand, nanomachines are envisioned to accomplish tasks ranging from computing and data storing to sensing and actuation. Recently, in vivo wireless nanosensor networks (iWNSNs) have been presented to provide fast and accurate disease diagnosis and treatment. These networks are capable of operating inside the human body in real time and will be of great benefit for medical monitoring and medical implant communication. Despite the fact that nanodevice technology has been witnessing great advancements, enabling the communication among nanomachines is still a major challenge.