Do you want to publish a course? Click here

A Virus Has No Religion: Analyzing Islamophobia on Twitter During the COVID-19 Outbreak

62   0   0.0 ( 0 )
 Added by Mohit Chandra
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The COVID-19 pandemic has disrupted peoples lives driving them to act in fear, anxiety, and anger, leading to worldwide racist events in the physical world and online social networks. Though there are works focusing on Sinophobia during the COVID-19 pandemic, less attention has been given to the recent surge in Islamophobia. A large number of positive cases arising out of the religious Tablighi Jamaat gathering has driven people towards forming anti-Muslim communities around hashtags like #coronajihad, #tablighijamaatvirus on Twitter. In addition to the online spaces, the rise in Islamophobia has also resulted in increased hate crimes in the real world. Hence, an investigation is required to create interventions. To the best of our knowledge, we present the first large-scale quantitative study linking Islamophobia with COVID-19. In this paper, we present CoronaBias dataset which focuses on anti-Muslim hate spanning four months, with over 410,990 tweets from 244,229 unique users. We use this dataset to perform longitudinal analysis. We find the relation between the trend on Twitter with the offline events that happened over time, measure the qualitative changes in the context associated with the Muslim community, and perform macro and micro topic analysis to find prevalent topics. We also explore the nature of the content, focusing on the toxicity of the URLs shared within the tweets present in the CoronaBias dataset. Apart from the content-based analysis, we focus on user analysis, revealing that the portrayal of religion as a symbol of patriotism played a crucial role in deciding how the Muslim community was perceived during the pandemic. Through these experiments, we reveal the existence of anti-Muslim rhetoric around COVID-19 in the Indian sub-continent.



rate research

Read More

The ongoing Coronavirus (COVID-19) pandemic highlights the inter-connectedness of our present-day globalized world. With social distancing policies in place, virtual communication has become an important source of (mis)information. As increasing number of people rely on social media platforms for news, identifying misinformation and uncovering the nature of online discourse around COVID-19 has emerged as a critical task. To this end, we collected streaming data related to COVID-19 using the Twitter API, starting March 1, 2020. We identified unreliable and misleading contents based on fact-checking sources, and examined the narratives promoted in misinformation tweets, along with the distribution of engagements with these tweets. In addition, we provide examples of the spreading patterns of prominent misinformation tweets. The analysis is presented and updated on a publically accessible dashboard (https://usc-melady.github.io/COVID-19-Tweet-Analysis) to track the nature of online discourse and misinformation about COVID-19 on Twitter from March 1 - June 5, 2020. The dashboard provides a daily list of identified misinformation tweets, along with topics, sentiments, and emerging trends in the COVID-19 Twitter discourse. The dashboard is provided to improve visibility into the nature and quality of information shared online, and provide real-time access to insights and information extracted from the dataset.
Past research has studied social determinants of attitudes toward foreign countries. Confounded by potential endogeneity biases due to unobserved factors or reverse causality, the causal impact of these factors on public opinion is usually difficult to establish. Using social media data, we leverage the suddenness of the COVID-19 pandemic to examine whether a major global event has causally changed American views of another country. We collate a database of more than 297 million posts on the social media platform Twitter about China or COVID-19 up to June 2020, and we treat tweeting about COVID-19 as a proxy for individual awareness of COVID-19. Using regression discontinuity and difference-in-difference estimation, we find that awareness of COVID-19 causes a sharp rise in anti-China attitudes. Our work has implications for understanding how self-interest affects policy preference and how Americans view migrant communities.
The Covid-19 pandemic has had a deep impact on the lives of the entire world population, inducing a participated societal debate. As in other contexts, the debate has been the subject of several d/misinformation campaigns; in a quite unprecedented fashion, however, the presence of false information has seriously put at risk the public health. In this sense, detecting the presence of malicious narratives and identifying the kinds of users that are more prone to spread them represent the first step to limit the persistence of the former ones. In the present paper we analyse the semantic network observed on Twitter during the first Italian lockdown (induced by the hashtags contained in approximately 1.5 millions tweets published between the 23rd of March 2020 and the 23rd of April 2020) and study the extent to which various discursive communities are exposed to d/misinformation arguments. As observed in other studies, the recovered discursive communities largely overlap with traditional political parties, even if the debated topics concern different facets of the management of the pandemic. Although the themes directly related to d/misinformation are a minority of those discussed within our semantic networks, their popularity is unevenly distributed among the various discursive communities.
200 - Joel Dyer , Blas Kolic 2020
Successful navigation of the Covid-19 pandemic is predicated on public cooperation with safety measures and appropriate perception of risk, in which emotion and attention play important roles. Signatures of public emotion and attention are present in social media data, thus natural language analysis of this text enables near-to-real-time monitoring of indicators of public risk perception. We compare key epidemiological indicators of the progression of the pandemic with indicators of the public perception of the pandemic constructed from ~20 million unique Covid-19-related tweets from 12 countries posted between 10th March -- 14th June 2020. We find evidence of psychophysical numbing: Twitter users increasingly fixate on mortality, but in a decreasingly emotional and increasingly analytic tone. Semantic network analysis based on word co-occurrences reveals changes in the emotional framing of Covid-19 casualties that are consistent with this hypothesis. We also find that the average attention afforded to national Covid-19 mortality rates is modelled accurately with the Weber-Fechner and power law functions of sensory perception. Our parameter estimates for these models are consistent with estimates from psychological experiments, and indicate that users in this dataset exhibit differential sensitivity by country to the national Covid-19 death rates. Our work illustrates the potential utility of social media for monitoring public risk perception and guiding public communication during crisis scenarios.
The coronavirus (COVID-19) pandemic has significantly altered our lifestyles as we resort to minimize the spread through preventive measures such as social distancing and quarantine. An increasingly worrying aspect is the gap between the exponential disease spread and the delay in adopting preventive measures. This gap is attributed to the lack of awareness about the disease and its preventive measures. Nowadays, social media platforms (ie., Twitter) are frequently used to create awareness about major events, including COVID-19. In this paper, we use Twitter to characterize public awareness regarding COVID-19 by analyzing the information flow in the most affected countries. Towards that, we collect more than 46K trends and 622 Million tweets from the top twenty most affected countries to examine 1) the temporal evolution of COVID-19 related trends, 2) the volume of tweets and recurring topics in those trends, and 3) the user sentiment towards preventive measures. Our results show that countries with a lower pandemic spread generated a higher volume of trends and tweets to expedite the information flow and contribute to public awareness. We also observed that in those countries, the COVID-19 related trends were generated before the sharp increase in the number of cases, indicating a preemptive attempt to notify users about the potential threat. Finally, we noticed that in countries with a lower spread, users had a positive sentiment towards COVID-19 preventive measures. Our measurements and analysis show that effective social media usage can influence public behavior, which can be leveraged to better combat future pandemics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا