Do you want to publish a course? Click here

Italian Twitter semantic network during the Covid-19 epidemic

87   0   0.0 ( 0 )
 Added by Fabio Saracco
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The Covid-19 pandemic has had a deep impact on the lives of the entire world population, inducing a participated societal debate. As in other contexts, the debate has been the subject of several d/misinformation campaigns; in a quite unprecedented fashion, however, the presence of false information has seriously put at risk the public health. In this sense, detecting the presence of malicious narratives and identifying the kinds of users that are more prone to spread them represent the first step to limit the persistence of the former ones. In the present paper we analyse the semantic network observed on Twitter during the first Italian lockdown (induced by the hashtags contained in approximately 1.5 millions tweets published between the 23rd of March 2020 and the 23rd of April 2020) and study the extent to which various discursive communities are exposed to d/misinformation arguments. As observed in other studies, the recovered discursive communities largely overlap with traditional political parties, even if the debated topics concern different facets of the management of the pandemic. Although the themes directly related to d/misinformation are a minority of those discussed within our semantic networks, their popularity is unevenly distributed among the various discursive communities.



rate research

Read More

200 - Joel Dyer , Blas Kolic 2020
Successful navigation of the Covid-19 pandemic is predicated on public cooperation with safety measures and appropriate perception of risk, in which emotion and attention play important roles. Signatures of public emotion and attention are present in social media data, thus natural language analysis of this text enables near-to-real-time monitoring of indicators of public risk perception. We compare key epidemiological indicators of the progression of the pandemic with indicators of the public perception of the pandemic constructed from ~20 million unique Covid-19-related tweets from 12 countries posted between 10th March -- 14th June 2020. We find evidence of psychophysical numbing: Twitter users increasingly fixate on mortality, but in a decreasingly emotional and increasingly analytic tone. Semantic network analysis based on word co-occurrences reveals changes in the emotional framing of Covid-19 casualties that are consistent with this hypothesis. We also find that the average attention afforded to national Covid-19 mortality rates is modelled accurately with the Weber-Fechner and power law functions of sensory perception. Our parameter estimates for these models are consistent with estimates from psychological experiments, and indicate that users in this dataset exhibit differential sensitivity by country to the national Covid-19 death rates. Our work illustrates the potential utility of social media for monitoring public risk perception and guiding public communication during crisis scenarios.
Due to the outbreak of COVID-19, users are increasingly turning to online services. An increase in social media usage has also been observed, leading to the suspicion that this has also raised cyberbullying. In this initial work, we explore the possibility of an increase in cyberbullying incidents due to the pandemic and high social media usage. To evaluate this trend, we collected 454,046 cyberbullying-related public tweets posted between January 1st, 2020 -- June 7th, 2020. We summarize the tweets containing multiple keywords into their daily counts. Our analysis showed the existence of at most one statistically significant changepoint for most of these keywords, which were primarily located around the end of March. Almost all these changepoint time-locations can be attributed to COVID-19, which substantiates our initial hypothesis of an increase in cyberbullying through analysis of discussions over Twitter.
The outbreak of COVID-19 highlights the need for a more harmonized, less privacy-concerning, easily accessible approach to monitoring the human mobility that has been proved to be associated with the viral transmission. In this study, we analyzed 587 million tweets worldwide to see how global collaborative efforts in reducing human mobility are reflected from the user-generated information at the global, country, and the U.S. state scale. Considering the multifaceted nature of mobility, we propose two types of distance: the single-day distance and the cross-day distance. To quantify the responsiveness in certain geographical regions, we further propose a mobility-based responsive index (MRI) that captures the overall degree of mobility changes within a time window. The results suggest that mobility patterns obtained from Twitter data are amendable to quantitatively reflect the mobility dynamics. Globally, the proposed two distances had greatly deviated from their baselines after March 11, 2020, when WHO declared COVID-19 as a pandemic. The considerably less periodicity after the declaration suggests that the protection measures have obviously affected peoples travel routines. The country scale comparisons reveal the discrepancies in responsiveness, evidenced by the contrasting mobility patterns in different epidemic phases. We find that the triggers of mobility changes correspond well with the national announcements of mitigation measures. In the U.S., the influence of the COVID-19 pandemic on mobility is distinct. However, the impacts varied substantially among states. The strong mobility recovering momentum is further fueled by the Black Lives Matter protests, potentially fostering the second wave of infections in the U.S.
The COVID-19 pandemic has disrupted peoples lives driving them to act in fear, anxiety, and anger, leading to worldwide racist events in the physical world and online social networks. Though there are works focusing on Sinophobia during the COVID-19 pandemic, less attention has been given to the recent surge in Islamophobia. A large number of positive cases arising out of the religious Tablighi Jamaat gathering has driven people towards forming anti-Muslim communities around hashtags like #coronajihad, #tablighijamaatvirus on Twitter. In addition to the online spaces, the rise in Islamophobia has also resulted in increased hate crimes in the real world. Hence, an investigation is required to create interventions. To the best of our knowledge, we present the first large-scale quantitative study linking Islamophobia with COVID-19. In this paper, we present CoronaBias dataset which focuses on anti-Muslim hate spanning four months, with over 410,990 tweets from 244,229 unique users. We use this dataset to perform longitudinal analysis. We find the relation between the trend on Twitter with the offline events that happened over time, measure the qualitative changes in the context associated with the Muslim community, and perform macro and micro topic analysis to find prevalent topics. We also explore the nature of the content, focusing on the toxicity of the URLs shared within the tweets present in the CoronaBias dataset. Apart from the content-based analysis, we focus on user analysis, revealing that the portrayal of religion as a symbol of patriotism played a crucial role in deciding how the Muslim community was perceived during the pandemic. Through these experiments, we reveal the existence of anti-Muslim rhetoric around COVID-19 in the Indian sub-continent.
The coronavirus (COVID-19) pandemic has significantly altered our lifestyles as we resort to minimize the spread through preventive measures such as social distancing and quarantine. An increasingly worrying aspect is the gap between the exponential disease spread and the delay in adopting preventive measures. This gap is attributed to the lack of awareness about the disease and its preventive measures. Nowadays, social media platforms (ie., Twitter) are frequently used to create awareness about major events, including COVID-19. In this paper, we use Twitter to characterize public awareness regarding COVID-19 by analyzing the information flow in the most affected countries. Towards that, we collect more than 46K trends and 622 Million tweets from the top twenty most affected countries to examine 1) the temporal evolution of COVID-19 related trends, 2) the volume of tweets and recurring topics in those trends, and 3) the user sentiment towards preventive measures. Our results show that countries with a lower pandemic spread generated a higher volume of trends and tweets to expedite the information flow and contribute to public awareness. We also observed that in those countries, the COVID-19 related trends were generated before the sharp increase in the number of cases, indicating a preemptive attempt to notify users about the potential threat. Finally, we noticed that in countries with a lower spread, users had a positive sentiment towards COVID-19 preventive measures. Our measurements and analysis show that effective social media usage can influence public behavior, which can be leveraged to better combat future pandemics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا