No Arabic abstract
In this work, we estimate how much bulk viscosity driven by Urca processes is likely to affect the gravitational wave signal of a neutron star coalescence. In the late inspiral, we show that bulk viscosity affects the binding energy at fourth post-Newtonian (PN) order. Even though this effect is enhanced by the square of the gravitational compactness, the coefficient of bulk viscosity is likely too small to lead to observable effects in the waveform during the late inspiral, when only considering the orbital motion itself. In the post-merger, however, the characteristic time-scales and spatial scales are different, potentially leading to the opposite conclusion. We post-process data from a state-of-the-art equal-mass binary neutron star merger simulation to estimate the effects of bulk viscosity (which was not included in the simulation itself). In that scenario, we find that bulk viscosity can reach high values in regions of the merger. We compute several estimates of how much it might directly affect the global dynamics of the considered merger scenario, and find that it could become significant. Even larger effects could arise in different merger scenarios or in simulations that include non-linear effects. This assessment is reinforced by a quantitative comparison with relativistic heavy-ion collisions where such effects have been explored extensively.
In order to extract maximal information from neutron-star merger signals, both gravitational and electromagnetic, we need to ensure that our theoretical models/numerical simulations faithfully represent the extreme physics involved. This involves a range of issues, with the finite temperature effects regulating many of the relevant phenomena. As a step towards understanding these issues, we explore the conditions for $beta$-equilibrium in neutron star matter for the densities and temperatures reached in a binary neutron star merger. Using the results from our out-of-equilibrium merger simulation, we consider how different notions of equilibrium may affect the merger dynamics, raising issues that arise when attempting to account for these conditions in future simulations. These issues are both computational and conceptual. We show that the effects lead to, in our case, a softening of the equation of state in some density regions, and to composition changes that affect processes that rely on deviation from equilibrium, such as bulk viscosity, both in terms of the magnitude and the equilibration timescales inherent to the relevant set of reactions. We also demonstrate that it is difficult to determine exactly which equilibrium conditions are relevant in which regions of the matter due to the dependence on neutrino absorption, further complicating the calculation of the reactions that work to restore the matter to equilibrium.
We present a novel method for revealing the equation of state of high-density neutron star matter through gravitational waves emitted during the postmerger phase of a binary neutron star system. The method relies on a small number of detections of the peak frequency in the postmerger phase for binaries of different (relatively low) masses, in the most likely range of expected detections. From such observations, one can construct the derivative of the peak frequency versus the binary mass, in this mass range. Through a detailed study of binary neutron star mergers for a large sample of equations of state, we show that one can extrapolate the above information to the highest possible mass (the threshold mass for black hole formation in a binary neutron star merger). In turn, this allows for an empirical determination of the maximum mass of cold, nonrotating neutron stars to within 0.1 M_sun, while the corresponding radius is determined to within a few percent. Combining this with the determination of the radius of cold, nonrotating neutron stars of 1.6 M_sun (to within a few percent, as was demonstrated in Bauswein et al., PRD, 86, 063001, 2012), allows for a clear distinction of a particular candidate equation of state among a large set of other candidates. Our method is particularly appealing because it reveals simultaneously the moderate and very high-density parts of the equation of state, enabling the distinction of mass-radius relations even if they are similar at typical neutron star masses. Furthermore, our method also allows to deduce the maximum central energy density and maximum central rest-mass density of cold, nonrotating neutron stars with an accuracy of a few per cent.
The detections of gravitational waves (GWs) from binary neutron star (BNS) systems and neutron star--black hole (NSBH) systems provide new insights into dense matter properties in extreme conditions and associated high-energy astrophysical processes. However, currently information about NS equation of state (EoS) is extracted with very limited precision. Meanwhile, the fruitful results from the serendipitous discovery of the $gamma$-ray burst alongside GW170817 show the necessity of early warning alerts. Accurate measurements of the matter effects and sky location could be achieved by joint GW detection from space and ground. In our work, based on two example cases, GW170817 and GW200105, we use the Fisher information matrix analysis to investigate the multiband synergy between the space-borne decihertz GW detectors and the ground-based Einstein Telescope (ET). We specially focus on the parameters pertaining to spin-induced quadrupole moment, tidal deformability, and sky localization. We demonstrate that, (i) only with the help of multiband observations can we constrain the quadrupole parameter; and (ii) with the inclusion of decihertz GW detectors, the errors of tidal deformability would be a few times smaller, indicating that many more EoSs could be excluded; (iii) with the inclusion of ET, the sky localization improves by about an order of magnitude. Furthermore, we have systematically compared the different limits from four planned decihertz detectors and adopting two widely used waveform models.
With the first observation of a binary neutron star merger through gravitational waves and light GW170817, compact binary mergers have now taken the center stage in nuclear astrophysics. They are thought to be one of the main astrophysical sites of production of r-process elements, and merger observations have become a fundamental tool to constrain the properties of matter. Here, we review our current understanding of the dynamics of neutron star mergers, in general, and of GW170817 in particular. We discuss the physical processes governing the inspiral, merger, and postmerger evolution, and we highlight the connections between these processes, the dynamics, and the multimessenger observables. Finally, we discuss open questions and issues in the field and the need to address them through a combination of better theoretical models and new observations.
(abridged) We investigate the quark deconfinement phase transition in the context of binary neutron star (BNS) mergers. We employ a new finite-temperature composition-dependent equation of state (EOS) with a first order phase transition between hadrons and deconfined quarks to perform numerical relativity simulations of BNS mergers. The softening of the EOS due to the phase transition causes the merger remnants to be more compact and to collapse to a black hole (BH) at earlier times. The phase transition is imprinted on the postmerger gravitational wave (GW) signal duration, amplitude, and peak frequency. However, this imprint is only detectable for binaries with sufficiently long-lived remnants. Moreover, the phase transition does not result in significant deviations from quasi-universal relations for the postmerger GW peak frequency. We also study the impact of the phase transition on dynamical ejecta, remnant accretion disk masses, r-process nucleosynthetic yields and associated electromagnetic (EM) counterparts. While there are differences in the EM counterparts and nucleosynthesis yields between the purely hadronic models and the models with phase transitions, these can be primarily ascribed to the difference in remnant collapse time between the two. An exception is the non-thermal afterglow caused by the interaction of the fastest component of the dynamical ejecta and the interstellar medium, which is systematically boosted in the binaries with phase transition as a consequence of the more violent merger they experience.