Do you want to publish a course? Click here

Fairer Software Made Easier (using Keys)

86   0   0.0 ( 0 )
 Added by TIm Menzies
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Can we simplify explanations for software analytics? Maybe. Recent results show that systems often exhibit a keys effect; i.e. a few key features control the rest. Just to say the obvious, for systems controlled by a few keys, explanation and control is just a matter of running a handful of what-if queries across the keys. By exploiting the keys effect, it should be possible to dramatically simplify even complex explanations, such as those required for ethical AI systems.



rate research

Read More

Reproducibility in the computational sciences has been stymied because of the complex and rapidly changing computational environments in which modern research takes place. While many will espouse reproducibility as a value, the challenge of making it happen (both for themselves and testing the reproducibility of others work) often outweigh the benefits. There have been a few reproducibility solutions designed and implemented by the community. In particular, the authors are contributors to ReproZip, a tool to enable computational reproducibility by tracing and bundling together research in the environment in which it takes place (e.g. ones computer or server). In this white paper, we introduce a tool for unpacking ReproZip bundles in the cloud, ReproServer. ReproServer takes an uploaded ReproZip bundle (.rpz file) or a link to a ReproZip bundle, and users can then unpack them in the cloud via their browser, allowing them to reproduce colleagues work without having to install anything locally. This will help lower the barrier to reproducing others work, which will aid reviewers in verifying the claims made in papers and reusing previously published research.
180 - Chris Hobbs , Waqar Ahmed 2021
Traditionally, fault- or event-tree analyses or FMEAs have been used to estimate the probability of a safety-critical device creating a dangerous condition. However, these analysis techniques are less effective for systems primarily reliant on software, and are perhaps least effective in Safety of the Intended Functionality (SOTIF) environments, where the failure or dangerous situation occurs even though all components behaved as designed. This paper describes an approach we are considering at BlackBerry QNX: using Bayesian Belief Networks to predict defects in embedded software, and reports on early results from our research.
AI-based systems are software systems with functionalities enabled by at least one AI component (e.g., for image- and speech-recognition, and autonomous driving). AI-based systems are becoming pervasive in society due to advances in AI. However, there is limited synthesized knowledge on Software Engineering (SE) approaches for building, operating, and maintaining AI-based systems. To collect and analyze state-of-the-art knowledge about SE for AI-based systems, we conducted a systematic mapping study. We considered 248 studies published between January 2010 and March 2020. SE for AI-based systems is an emerging research area, where more than 2/3 of the studies have been published since 2018. The most studied properties of AI-based systems are dependability and safety. We identified multiple SE approaches for AI-based systems, which we classified according to the SWEBOK areas. Studies related to software testing and software quality are very prevalent, while areas like software maintenance seem neglected. Data-related issues are the most recurrent challenges. Our results are valuable for: researchers, to quickly understand the state of the art and learn which topics need more research; practitioners, to learn about the approaches and challenges that SE entails for AI-based systems; and, educators, to bridge the gap among SE and AI in their curricula.
The complexity of software tasks and the uncertainty of crowd developer behaviors make it challenging to plan crowdsourced software development (CSD) projects. In a competitive crowdsourcing marketplace, competition for shared worker resources from multiple simultaneously open tasks adds another layer of uncertainty to the potential outcomes of software crowdsourcing. These factors lead to the need for supporting CSD managers with automated scheduling to improve the visibility and predictability of crowdsourcing processes and outcomes. To that end, this paper proposes an evolutionary algorithm-based task scheduling method for crowdsourced software development. The proposed evolutionary scheduling method uses a multiobjective genetic algorithm to recommend an optimal task start date. The method uses three fitness functions, based on project duration, task similarity, and task failure prediction, respectively. The task failure fitness function uses a neural network to predict the probability of task failure with respect to a specific task start date. The proposed method then recommends the best tasks start dates for the project as a whole and each individual task so as to achieve the lowest project failure ratio. Experimental results on 4 projects demonstrate that the proposed method has the potential to reduce project duration by a factor of 33-78%.
Given the current transformative potential of research that sits at the intersection of Deep Learning (DL) and Software Engineering (SE), an NSF-sponsored community workshop was conducted in co-location with the 34th IEEE/ACM International Conference on Automated Software Engineering (ASE19) in San Diego, California. The goal of this workshop was to outline high priority areas for cross-cutting research. While a multitude of exciting directions for future work were identified, this report provides a general summary of the research areas representing the areas of highest priority which were discussed at the workshop. The intent of this report is to serve as a potential roadmap to guide future work that sits at the intersection of SE & DL.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا