Do you want to publish a course? Click here

Using Bayesian Modelling to Predict Software Incidents

181   0   0.0 ( 0 )
 Added by Waqar Ahmed
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Traditionally, fault- or event-tree analyses or FMEAs have been used to estimate the probability of a safety-critical device creating a dangerous condition. However, these analysis techniques are less effective for systems primarily reliant on software, and are perhaps least effective in Safety of the Intended Functionality (SOTIF) environments, where the failure or dangerous situation occurs even though all components behaved as designed. This paper describes an approach we are considering at BlackBerry QNX: using Bayesian Belief Networks to predict defects in embedded software, and reports on early results from our research.



rate research

Read More

In cloud computing, software-defined network (SDN) gaining more attention due to its advantages in network configuration to improve network performance and network monitoring. SDN addresses an issue of static architecture in traditional networks by allowing centralised control of a network system. SDN contains centralised network intelligence module which separates a process of forwarding packets (data plane) from packet routing process (control plane). It is essential to ensure the correctness of SDN due to secure data transmitting in it. In this paper. Model-checking is chosen to verify an SDN network. The Computation Tree Logic (CTL) and Linear Temporal Logic (LTL) used as a specification to express properties of an SDN. Then complete SDN structure is defined formally along with its Kripke structure. Finally, temporal properties are analysed against the SDN Kripke model to assure the properties of SDN is correct.
Statistics comes in two main flavors: frequentist and Bayesian. For historical and technical reasons, frequentist statistics have traditionally dominated empirical data analysis, and certainly remain prevalent in empirical software engineering. This situation is unfortunate because frequentist statistics suffer from a number of shortcomings---such as lack of flexibility and results that are unintuitive and hard to interpret---that curtail their effectiveness when dealing with the heterogeneous data that is increasingly available for empirical analysis of software engineering practice. In this paper, we pinpoint these shortcomings, and present Bayesian data analysis techniques that provide tangible benefits---as they can provide clearer results that are simultaneously robust and nuanced. After a short, high-level introduction to the basic tools of Bayesian statistics, we present the reanalysis of two empirical studies on the effectiveness of automatically generated tests and the performance of programming languages. By contrasting the original frequentist analyses with our new Bayesian analyses, we demonstrate the concrete advantages of the latter. To conclude we advocate a more prominent role for Bayesian statistical techniques in empirical software engineering research and practice.
In the last decade, two paradigm shifts have reshaped the software industry - the move from boxed products to services and the widespread adoption of cloud computing. This has had a huge impact on the software development life cycle and the DevOps processes. Particularly, incident management has become critical for developing and operating large-scale services. Incidents are created to ensure timely communication of service issues and, also, their resolution. Prior work on incident management has been heavily focused on the challenges with incident triaging and de-duplication. In this work, we address the fundamental problem of structured knowledge extraction from service incidents. We have built SoftNER, a framework for unsupervised knowledge extraction from service incidents. We frame the knowledge extraction problem as a Named-entity Recognition task for extracting factual information. SoftNER leverages structural patterns like key,value pairs and tables for bootstrapping the training data. Further, we build a novel multi-task learning based BiLSTM-CRF model which leverages not just the semantic context but also the data-types for named-entity extraction. We have deployed SoftNER at Microsoft, a major cloud service provider and have evaluated it on more than 2 months of cloud incidents. We show that the unsupervised machine learning based approach has a high precision of 0.96. Our multi-task learning based deep learning model also outperforms the state of the art NER models. Lastly, using the knowledge extracted by SoftNER we are able to build significantly more accurate models for important downstream tasks like incident triaging.
We explore the applicability of Graph Neural Networks in learning the nuances of source code from a security perspective. Specifically, whether signatures of vulnerabilities in source code can be learned from its graph representation, in terms of relationships between nodes and edges. We create a pipeline we call AI4VA, which first encodes a sample source code into a Code Property Graph. The extracted graph is then vectorized in a manner which preserves its semantic information. A Gated Graph Neural Network is then trained using several such graphs to automatically extract templates differentiating the graph of a vulnerable sample from a healthy one. Our model outperforms static analyzers, classic machine learning, as well as CNN and RNN-based deep learning models on two of the three datasets we experiment with. We thus show that a code-as-graph encoding is more meaningful for vulnerability detection than existing code-as-photo and linear sequence encoding approaches. (Submitted Oct 2019, Paper #28, ICST)
139 - Carlo A. Furia 2016
Statistics comes in two main flavors: frequentist and Bayesian. For historical and technical reasons, frequentist statistics has dominated data analysis in the past; but Bayesian statistics is making a comeback at the forefront of science. In this paper, we give a practical overview of Bayesian statistics and illustrate its main advantages over frequentist statistics for the kinds of analyses that are common in empirical software engineering, where frequentist statistics still is standard. We also apply Bayesian statistics to empirical data from previous research investigating agile vs. structured development processes, the performance of programming languages, and random testing of object-oriented programs. In addition to being case studies demonstrating how Bayesian analysis can be applied in practice, they provide insights beyond the results in the original publications (which used frequentist statistics), thus showing the practical value brought by Bayesian statistics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا