Do you want to publish a course? Click here

Improving Low-resource Reading Comprehension via Cross-lingual Transposition Rethinking

178   0   0.0 ( 0 )
 Added by Gaochen Wu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Extractive Reading Comprehension (ERC) has made tremendous advances enabled by the availability of large-scale high-quality ERC training data. Despite of such rapid progress and widespread application, the datasets in languages other than high-resource languages such as English remain scarce. To address this issue, we propose a Cross-Lingual Transposition ReThinking (XLTT) model by modelling existing high-quality extractive reading comprehension datasets in a multilingual environment. To be specific, we present multilingual adaptive attention (MAA) to combine intra-attention and inter-attention to learn more general generalizable semantic and lexical knowledge from each pair of language families. Furthermore, to make full use of existing datasets, we adopt a new training framework to train our model by calculating task-level similarities between each existing dataset and target dataset. The experimental results show that our XLTT model surpasses six baselines on two multilingual ERC benchmarks, especially more effective for low-resource languages with 3.9 and 4.1 average improvement in F1 and EM, respectively.



rate research

Read More

Cross-lingual Machine Reading Comprehension (CLMRC) remains a challenging problem due to the lack of large-scale annotated datasets in low-source languages, such as Arabic, Hindi, and Vietnamese. Many previous approaches use translation data by translating from a rich-source language, such as English, to low-source languages as auxiliary supervision. However, how to effectively leverage translation data and reduce the impact of noise introduced by translation remains onerous. In this paper, we tackle this challenge and enhance the cross-lingual transferring performance by a novel augmentation approach named Language Branch Machine Reading Comprehension (LBMRC). A language branch is a group of passages in one single language paired with questions in all target languages. We train multiple machine reading comprehension (MRC) models proficient in individual language based on LBMRC. Then, we devise a multilingual distillation approach to amalgamate knowledge from multiple language branch models to a single model for all target languages. Combining the LBMRC and multilingual distillation can be more robust to the data noises, therefore, improving the models cross-lingual ability. Meanwhile, the produced single multilingual model is applicable to all target languages, which saves the cost of training, inference, and maintenance for multiple models. Extensive experiments on two CLMRC benchmarks clearly show the effectiveness of our proposed method.
We propose a simple method to generate multilingual question and answer pairs on a large scale through the use of a single generative model. These synthetic samples can be used to improve the zero-shot performance of multilingual QA models on target languages. Our proposed multi-task training of the generative model only requires the labeled training samples in English, thus removing the need for such samples in the target languages, making it applicable to far more languages than those with labeled data. Human evaluations indicate the majority of such samples are grammatically correct and sensible. Experimental results show our proposed approach can achieve large gains on the XQuAD dataset, reducing the gap between zero-shot and supervised performance of smaller QA models on various languages.
101 - Wenxin Hou , Han Zhu , Yidong Wang 2021
Cross-lingual speech adaptation aims to solve the problem of leveraging multiple rich-resource languages to build models for a low-resource target language. Since the low-resource language has limited training data, speech recognition models can easily overfit. In this paper, we propose to use adapters to investigate the performance of multiple adapters for parameter-efficient cross-lingual speech adaptation. Based on our previous MetaAdapter that implicitly leverages adapters, we propose a novel algorithms called SimAdapter for explicitly learning knowledge from adapters. Our algorithm leverages adapters which can be easily integrated into the Transformer structure.MetaAdapter leverages meta-learning to transfer the general knowledge from training data to the test language. SimAdapter aims to learn the similarities between the source and target languages during fine-tuning using the adapters. We conduct extensive experiments on five-low-resource languages in Common Voice dataset. Results demonstrate that our MetaAdapter and SimAdapter methods can reduce WER by 2.98% and 2.55% with only 2.5% and 15.5% of trainable parameters compared to the strong full-model fine-tuning baseline. Moreover, we also show that these two novel algorithms can be integrated for better performance with up to 3.55% relative WER reduction.
We propose a new approach for learning contextualised cross-lingual word embeddings based only on a small parallel corpus (e.g. a few hundred sentence pairs). Our method obtains word embeddings via an LSTM-based encoder-decoder model that performs bidirectional translation and reconstruction of the input sentence. Through sharing model parameters among different languages, our model jointly trains the word embeddings in a common multilingual space. We also propose a simple method to combine word and subword embeddings to make use of orthographic similarities across different languages. We base our experiments on real-world data from endangered languages, namely Yongning Na, Shipibo-Konibo and Griko. Our experiments on bilingual lexicon induction and word alignment tasks show that our model outperforms existing methods by a large margin for most language pairs. These results demonstrate that, contrary to common belief, an encoder-decoder translation model is beneficial for learning cross-lingual representations, even in extremely low-resource scenarios.
104 - Kai Sun , Dian Yu , Jianshu Chen 2020
In this paper, we aim to extract commonsense knowledge to improve machine reading comprehension. We propose to represent relations implicitly by situating structured knowledge in a context instead of relying on a pre-defined set of relations, and we call it contextualized knowledge. Each piece of contextualized knowledge consists of a pair of interrelated verbal and nonverbal messages extracted from a script and the scene in which they occur as context to implicitly represent the relation between the verbal and nonverbal messages, which are originally conveyed by different modalities within the script. We propose a two-stage fine-tuning strategy to use the large-scale weakly-labeled data based on a single type of contextualized knowledge and employ a teacher-student paradigm to inject multiple types of contextualized knowledge into a student machine reader. Experimental results demonstrate that our method outperforms a state-of-the-art baseline by a 4.3% improvement in accuracy on the machine reading comprehension dataset C^3, wherein most of the questions require unstated prior knowledge.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا