Do you want to publish a course? Click here

Learning-to-Dispatch: Reinforcement Learning Based Flight Planning under Emergency

138   0   0.0 ( 0 )
 Added by Kai Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The effectiveness of resource allocation under emergencies especially hurricane disasters is crucial. However, most researchers focus on emergency resource allocation in a ground transportation system. In this paper, we propose Learning-to-Dispatch (L2D), a reinforcement learning (RL) based air route dispatching system, that aims to add additional flights for hurricane evacuation while minimizing the airspaces complexity and air traffic controllers workload. Given a bipartite graph with weights that are learned from the historical flight data using RL in consideration of short- and long-term gains, we formulate the flight dispatch as an online maximum weight matching problem. Different from the conventional order dispatch problem, there is no actual or estimated index that can evaluate how the additional evacuation flights influence the air traffic complexity. Then we propose a multivariate reward function in the learning phase and compare it with other univariate reward designs to show its superior performance. The experiments using the real-world dataset for Hurricane Irma demonstrate the efficacy and efficiency of our proposed schema.

rate research

Read More

For autonomous vehicles integrating onto roadways with human traffic participants, it requires understanding and adapting to the participants intention and driving styles by responding in predictable ways without explicit communication. This paper proposes a reinforcement learning based negotiation-aware motion planning framework, which adopts RL to adjust the driving style of the planner by dynamically modifying the prediction horizon length of the motion planner in real time adaptively w.r.t the event of a change in environment, typically triggered by traffic participants switch of intents with different driving styles. The framework models the interaction between the autonomous vehicle and other traffic participants as a Markov Decision Process. A temporal sequence of occupancy grid maps are taken as inputs for RL module to embed an implicit intention reasoning. Curriculum learning is employed to enhance the training efficiency and the robustness of the algorithm. We applied our method to narrow lane navigation in both simulation and real world to demonstrate that the proposed method outperforms the common alternative due to its advantage in alleviating the social dilemma problem with proper negotiation skills.
As power systems are undergoing a significant transformation with more uncertainties, less inertia and closer to operation limits, there is increasing risk of large outages. Thus, there is an imperative need to enhance grid emergency control to maintain system reliability and security. Towards this end, great progress has been made in developing deep reinforcement learning (DRL) based grid control solutions in recent years. However, existing DRL-based solutions have two main limitations: 1) they cannot handle well with a wide range of grid operation conditions, system parameters, and contingencies; 2) they generally lack the ability to fast adapt to new grid operation conditions, system parameters, and contingencies, limiting their applicability for real-world applications. In this paper, we mitigate these limitations by developing a novel deep meta reinforcement learning (DMRL) algorithm. The DMRL combines the meta strategy optimization together with DRL, and trains policies modulated by a latent space that can quickly adapt to new scenarios. We test the developed DMRL algorithm on the IEEE 300-bus system. We demonstrate fast adaptation of the meta-trained DRL polices with latent variables to new operating conditions and scenarios using the proposed method and achieve superior performance compared to the state-of-the-art DRL and model predictive control (MPC) methods.
Load shedding has been one of the most widely used and effective emergency control approaches against voltage instability. With increased uncertainties and rapidly changing operational conditions in power systems, existing methods have outstanding issues in terms of either speed, adaptiveness, or scalability. Deep reinforcement learning (DRL) was regarded and adopted as a promising approach for fast and adaptive grid stability control in recent years. However, existing DRL algorithms show two outstanding issues when being applied to power system control problems: 1) computational inefficiency that requires extensive training and tuning time; and 2) poor scalability making it difficult to scale to high dimensional control problems. To overcome these issues, an accelerated DRL algorithm named PARS was developed and tailored for power system voltage stability control via load shedding. PARS features high scalability and is easy to tune with only five main hyperparameters. The method was tested on both the IEEE 39-bus and IEEE 300-bus systems, and the latter is by far the largest scale for such a study. Test results show that, compared to other methods including model-predictive control (MPC) and proximal policy optimization(PPO) methods, PARS shows better computational efficiency (faster convergence), more robustness in learning, excellent scalability and generalization capability.
Under voltage load shedding has been considered as a standard and effective measure to recover the voltage stability of the electric power grid under emergency and severe conditions. However, this scheme usually trips a massive amount of load which can be unnecessary and harmful to customers. Recently, deep reinforcement learning (RL) has been regarded and adopted as a promising approach that can significantly reduce the amount of load shedding. However, like most existing machine learning (ML)-based control techniques, RL control usually cannot guarantee the safety of the systems under control. In this paper, we introduce a novel safe RL method for emergency load shedding of power systems, that can enhance the safe voltage recovery of the electric power grid after experiencing faults. Unlike the standard RL method, the safe RL method has a reward function consisting of a Barrier function that goes to minus infinity when the system state goes to the safety bounds. Consequently, the optimal control policy can render the power system to avoid the safety bounds. This method is general and can be applied to other safety-critical control problems. Numerical simulations on the 39-bus IEEE benchmark is performed to demonstrate the effectiveness of the proposed safe RL emergency control, as well as its adaptive capability to faults not seen in the training.
Increasing the response time of emergency vehicles(EVs) could lead to an immeasurable loss of property and life. On this account, tactical decision making for EVs microscopic control remains an indispensable issue to be improved. In this paper, a rule-based avoiding strategy(AS) is devised, that CVs in the prioritized zone ahead of EV should accelerate or change their lane to avoid it. Besides, a novel DQN method with speed-adaptive compact state space (SC-DQN) is put forward to fit in EVs high-speed feature and generalize in various road topologies. Afterward, the execution of AS feedback to the input of SC-DQN so that they joint organically as a combinational method. The following approach reveals that DRL could complement rule-based avoiding strategy in generalization, and on the contrary, the rule-based avoiding strategy could complement DRL in stability, and their combination could lead to less response time, lower collision rate and smoother trajectory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا