Do you want to publish a course? Click here

Electric control of a canted-antiferromagnetic Chern insulator

121   0   0.0 ( 0 )
 Added by Jiaqi Cai
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The interplay between band topology and magnetism can give rise to exotic states of matter. For example, magnetically doped topological insulators can realize a Chern insulator that exhibits quantized Hall resistance at zero magnetic field. While prior works have focused on ferromagnetic systems, little is known about band topology and its manipulation in antiferromagnets. Here, we report that MnBi$_2$Te$_4$ is a rare platform for realizing a canted-antiferromagnetic (cAFM) Chern insulator with electrical control. We show that the Chern insulator state with Chern number $C = 1$ appears as soon as the AFM to canted-AFM phase transition happens. The Chern insulator state is further confirmed by observing the unusual transition of the $C = 1$ state in the cAFM phase to the $C = 2$ orbital quantum Hall states in the magnetic field induced ferromagnetic phase. Near the cAFM-AFM phase boundary, we show that the Chern number can be toggled on and off by applying an electric field alone. We attribute this switching effect to the electrical field tuning of the exchange gap alignment between the top and bottom surfaces. Our work paves the way for future studies on topological cAFM spintronics and facilitates the development of proof-of-concept Chern insulator devices.



rate research

Read More

136 - Y. Li , M. Amado , T. Hyart 2019
In the quantum Hall regime of graphene, antiferromagnetic and spin-polarized ferromagnetic states at the zeroth Landau level compete, leading to a canted antiferromagnetic state depending on the direction and magnitude of an applied magnetic field. Here, we investigate this transition at 2.7 K in graphene Hall bars that are proximity coupled to the ferrimagnetic insulator Y$_{3}$Fe$_{5}$O$_{12}$. From nonlocal transport measurements, we demonstrate an induced magnetic exchange field in graphene, which lowers the magnetic field required to modulate the magnetic state in graphene. These results show that a magnetic proximity effect in graphene is an important ingredient for the development of two-dimensional materials in which it is desirable for ordered states of matter to be tunable with relatively small applied magnetic fields (> 6 T).
79 - H. C. Wu , L. Jin , 2019
We propose a two-dimensional non-Hermitian Chern insulator with inversion symmetry, which is anisotropic and has staggered gain and loss in both x and y directions. In this system, conventional bulk-boundary correspondence holds. The Chern number is a topological invariant that accurately predicts the topological phase transition and the existence of helical edge states in the topologically nontrivial gapped phase. In the gapless phase, the band touching points are isolated and protected by the symmetry. The degenerate points alter the system topology, and the exceptional points can destroy the existence of helical edge states. Topologically protected helical edge states exist in the gapless phase for the system under open boundary condition in one direction, which are predicted by the winding number associated with the vector field of average values of Pauli matrices. The winding number also identifies the detaching points between the edge states and the bulk states in the energy bands. The non-Hermiticity also supports a topological phase with zero Chern number, where a pair of in-gap helical edge states exists. Our findings provide insights into the symmetry protected non-Hermitian topological insulators.
93 - Han Yan , Zexin Feng , Peixin Qin 2021
In recent years, the field of antiferromagnetic spintronics has been substantially advanced. Electric-field control is a promising approach to achieving ultra-low power spintronic devices via suppressing Joule heating. In this article, cutting-edge research, including electric-field modulation of antiferromagnetic spintronic devices using strain, ionic liquids, dielectric materials, and electrochemical ionic migration, are comprehensively reviewed. Various emergent topics such as the Neel spin-orbit torque, chiral spintronics, topological antiferromagnetic spintronics, anisotropic magnetoresistance, memory devices, two-dimensional magnetism, and magneto-ionic modulation with respect to antiferromagnets are examined. In conclusion, we envision the possibility of realizing high-quality room-temperature antiferromagnetic tunnel junctions, antiferromagnetic spin logic devices, and artificial antiferromagnetic neurons. It is expected that this work provides an appropriate and forward-looking perspective that will promote the rapid development of this field.
The polar covalent bond between a single Au atom terminating the apex of an atomic force microscope tip and a C atom of graphene on SiC(0001) is exposed to an external electric field. For one field orientation the Au-C bond is strong enough to sustain the mechanical load of partially detached graphene, whilst for the opposite orientation the bond breaks easily. Calculations based on density functional theory and nonequilibrium Greens function methods support the experimental observations by unveiling bond forces that reflect the polar character of the bond. Field-induced charge transfer between the atomic orbitals modifies the polarity of the different electronegative reaction partners and the Au-C bond strength.
Our world is composed of various materials with different structures, where spin structures have been playing a pivotal role in spintronic devices of the contemporary information technology. Apart from conventional collinear spin materials such as collinear ferromagnets and collinear antiferromagnetically coupled materials, noncollinear spintronic materials have emerged as hot spots of research attention owing to exotic physical phenomena. In this Review, we firstly introduce two types noncollinear spin structures, i.e., the chiral spin structure that yields real-space Berry phases and the coplanar noncollinear spin structure that could generate momentum-space Berry phases, and then move to relevant novel physical phenomena including topological Hall effect, anomalous Hall effect, multiferroic, Weyl fermions, spin-polarized current, and spin Hall effect without spin-orbit coupling in these noncollinear spin systems. Afterwards, we summarize and elaborate the electric-field control of the noncollinear spin structure and related physical effects, which could enable ultralow power spintronic devices in future. In the final outlook part, we emphasize the importance and possible routes for experimentally detecting the intriguing theoretically predicted spin-polarized current, verifying the spin Hall effect in the absence of spin-orbit coupling and exploring the anisotropic magnetoresistance and domain-wall-related magnetoresistance effects for noncollinear antiferromagnetic materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا