Do you want to publish a course? Click here

Indirect dark-matter detection with MadDM v3.2 -- Lines and Loops

91   0   0.0 ( 0 )
 Added by Jan Heisig
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Automated tools for the computation of particle physics processes have become the backbone of phenomenological studies beyond the standard model. Here, we present MadDM v3.2. This release enables the fully automated computation of loop-induced dark-matter annihilation processes, relevant for indirect detection observables. Special emphasis lies on the annihilation into $gamma X$, where $X=gamma, Z, h$ or any new particle even under the dark symmetry. These processes lead to the sharp spectral feature of monochromatic gamma lines - a smoking-gun signature of dark matter in our Galaxy. MadDM provides the predictions for the respective fluxes near-Earth and derives constraints from the gamma-ray line searches by Fermi-LAT and HESS. As an application, we discuss the implications for the viable parameter space of a top-philic $t$-channel mediator model and the inert doublet model.



rate research

Read More

We investigate the feasibility of the indirect detection of dark matter in a simple model using the neutrino portal. The model is very economical, with right-handed neutrinos generating neutrino masses through the Type-I seesaw mechanism and simultaneously mediating interactions with dark matter. Given the small neutrino Yukawa couplings expected in a Type-I seesaw, direct detection and accelerator probes of dark matter in this scenario are challenging. However, dark matter can efficiently annihilate to right-handed neutrinos, which then decay via active-sterile mixing through the weak interactions, leading to a variety of indirect astronomical signatures. We derive the existing constraints on this scenario from Planck cosmic microwave background measurements, Fermi dwarf spheroidal galaxies and Galactic Center gamma-rays observations, and Alpha Magnetic Spectrometer - 02 antiprotons observations, and also discuss the future prospects of Fermi and the Cherenkov Telescope Array. Thermal annihilation rates are already being probed for dark matter lighter than about 50 GeV, and this can be extended to dark matter masses of 100 GeV and beyond in the future. This scenario can also provide a dark matter interpretation of the Fermi Galactic Center gamma ray excess, and we confront this interpretation with other indirect constraints. Finally we discuss some of the exciting implications of extensions of the minimal model with large neutrino Yukawa couplings and Higgs portal couplings.
We study a fermionic dark matter in a non-supersymmetric extension of the standard model with a family symmetry based on D6xZ2xZ2. In our model, the final state of the dark matter annihilation is determined to be e+ e- by the flavor symmetry, which is consistent with the PAMELA result. At first, we show that our dark matter mass should be within the range of 230 GeV - 750 GeV in the WMAP analysis combined with mu to e gamma constraint. Moreover we simultaneously explain the experiments of direct and indirect detection, by simply adding a gauge and D6 singlet real scalar field. In the direct detection experiments, we show that the lighter dark matter mass ~ 230 GeV and the lighter standard model Higgs boson ~ 115 GeV is in favor of the observed bounds reported by CDMS II and XENON100. In the indirect detection experiments, we explain the positron excess reported by PAMELA through the Breit-Wigner enhancement mechanism. We also show that our model is consistent with no antiproton excess suggested by PAMELA.
We consider indirect detection of meta-stable dark matter particles decaying into a stable neutral particle and a pair of standard model fermions. Due to the softer energy spectra from the three-body decay, such models could potentially explain the AMS-02 positron excess without being constrained by the Fermi-LAT gamma-ray data and the cosmic ray anti-proton measurements. We scrutinize over different final state fermions, paying special attention to handling of the cosmic ray background and including various contributions from cosmic ray propagation with the help of the textsc{LikeDM} package. It is found that primary decays into an electron-positron pair and a stable neutral particle could give rise to the AMS-02 positron excess and, at the same time, stay unscathed against the gamma-ray and anti-proton constraints. Decays to a muon pair or a mixed flavor electron-muon pair may also be viable depending on the propagation models. Decays to all other standard model fermions are severely disfavored.
The gravitino in models with a small violation of R-parity is a well-motivated decaying dark matter candidate that leads to a cosmological scenario that is consistent with big bang nucleosynthesis and thermal leptogenesis. The gravitino lifetime is cosmologically long-lived since its decays are suppressed by the Planck-scale as well as the small R-parity violating parameter. We discuss the signals in different cosmic-ray species coming from the decay of gravitino dark matter, namely gamma rays, positrons, antiprotons, antideuterons and neutrinos. Comparison to cosmic-ray data can be used to constrain the parameters of the model.
109 - A.R. Raklev , M.J. White 2009
Recently, a claim of possible evidence for Dark Matter in data from the Fermi LAT experiment was made by Goodenough and Hooper [8]. We test the Dark Matter properties consistent with their claim in terms of the MSSM by a 24-dimensional parameter scan using nested sampling, excluding all but a very small region of the MSSM. Although this claim is very preliminary, and not made by the Fermi LAT experiment, our scan shows a possible approach for the analysis of future firm evidence from an indirect detection experiment, and its potential for heavily constraining models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا