No Arabic abstract
Recently, Vision Transformers (ViTs) have shown competitive performance on image recognition while requiring less vision-specific inductive biases. In this paper, we investigate if such observation can be extended to image generation. To this end, we integrate the ViT architecture into generative adversarial networks (GANs). We observe that existing regularization methods for GANs interact poorly with self-attention, causing serious instability during training. To resolve this issue, we introduce novel regularization techniques for training GANs with ViTs. Empirically, our approach, named ViTGAN, achieves comparable performance to state-of-the-art CNN-based StyleGAN2 on CIFAR-10, CelebA, and LSUN bedroom datasets.
This paper does not describe a novel method. Instead, it studies a straightforward, incremental, yet must-know baseline given the recent progress in computer vision: self-supervised learning for Vision Transformers (ViT). While the training recipes for standard convolutional networks have been highly mature and robust, the recipes for ViT are yet to be built, especially in the self-supervised scenarios where training becomes more challenging. In this work, we go back to basics and investigate the effects of several fundamental components for training self-supervised ViT. We observe that instability is a major issue that degrades accuracy, and it can be hidden by apparently good results. We reveal that these results are indeed partial failure, and they can be improved when training is made more stable. We benchmark ViT results in MoCo v3 and several other self-supervised frameworks, with ablations in various aspects. We discuss the currently positive evidence as well as challenges and open questions. We hope that this work will provide useful data points and experience for future research.
Vision transformer has demonstrated promising performance on challenging computer vision tasks. However, directly training the vision transformers may yield unstable and sub-optimal results. Recent works propose to improve the performance of the vision transformers by modifying the transformer structures, e.g., incorporating convolution layers. In contrast, we investigate an orthogonal approach to stabilize the vision transformer training without modifying the networks. We observe the instability of the training can be attributed to the significant similarity across the extracted patch representations. More specifically, for deep vision transformers, the self-attention blocks tend to map different patches into similar latent representations, yielding information loss and performance degradation. To alleviate this problem, in this work, we introduce novel loss functions in vision transformer training to explicitly encourage diversity across patch representations for more discriminative feature extraction. We empirically show that our proposed techniques stabilize the training and allow us to train wider and deeper vision transformers. We further show the diversified features significantly benefit the downstream tasks in transfer learning. For semantic segmentation, we enhance the state-of-the-art (SOTA) results on Cityscapes and ADE20k. Our code is available at https://github.com/ChengyueGongR/PatchVisionTransformer.
Transformers have shown outstanding results for natural language understanding and, more recently, for image classification. We here extend this work and propose a transformer-based approach for image retrieval: we adopt vision transformers for generating image descriptors and train the resulting model with a metric learning objective, which combines a contrastive loss with a differential entropy regularizer. Our results show consistent and significant improvements of transformers over convolution-based approaches. In particular, our method outperforms the state of the art on several public benchmarks for category-level retrieval, namely Stanford Online Product, In-Shop and CUB-200. Furthermore, our experiments on ROxford and RParis also show that, in comparable settings, transformers are competitive for particular object retrieval, especially in the regime of short vector representations and low-resolution images.
Computer vision has achieved remarkable success by (a) representing images as uniformly-arranged pixel arrays and (b) convolving highly-localized features. However, convolutions treat all image pixels equally regardless of importance; explicitly model all concepts across all images, regardless of content; and struggle to relate spatially-distant concepts. In this work, we challenge this paradigm by (a) representing images as semantic visual tokens and (b) running transformers to densely model token relationships. Critically, our Visual Transformer operates in a semantic token space, judiciously attending to different image parts based on context. This is in sharp contrast to pixel-space transformers that require orders-of-magnitude more compute. Using an advanced training recipe, our VTs significantly outperform their convolutional counterparts, raising ResNet accuracy on ImageNet top-1 by 4.6 to 7 points while using fewer FLOPs and parameters. For semantic segmentation on LIP and COCO-stuff, VT-based feature pyramid networks (FPN) achieve 0.35 points higher mIoU while reducing the FPN modules FLOPs by 6.5x.
Vision transformers (ViTs) have been an alternative design paradigm to convolutional neural networks (CNNs). However, the training of ViTs is much harder than CNNs, as it is sensitive to the training parameters, such as learning rate, optimizer and warmup epoch. The reasons for training difficulty are empirically analysed in ~cite{xiao2021early}, and the authors conjecture that the issue lies with the textit{patchify-stem} of ViT models and propose that early convolutions help transformers see better. In this paper, we further investigate this problem and extend the above conclusion: only early convolutions do not help for stable training, but the scaled ReLU operation in the textit{convolutional stem} (textit{conv-stem}) matters. We verify, both theoretically and empirically, that scaled ReLU in textit{conv-stem} not only improves training stabilization, but also increases the diversity of patch tokens, thus boosting peak performance with a large margin via adding few parameters and flops. In addition, extensive experiments are conducted to demonstrate that previous ViTs are far from being well trained, further showing that ViTs have great potential to be a better substitute of CNNs.