Do you want to publish a course? Click here

ANCER: Anisotropic Certification via Sample-wise Volume Maximization

79   0   0.0 ( 0 )
 Added by Francisco Eiras
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Randomized smoothing has recently emerged as an effective tool that enables certification of deep neural network classifiers at scale. All prior art on randomized smoothing has focused on isotropic $ell_p$ certification, which has the advantage of yielding certificates that can be easily compared among isotropic methods via $ell_p$-norm radius. However, isotropic certification limits the region that can be certified around an input to worst-case adversaries, i.e., it cannot reason about other close, potentially large, constant prediction safe regions. To alleviate this issue, (i) we theoretically extend the isotropic randomized smoothing $ell_1$ and $ell_2$ certificates to their generalized anisotropic counterparts following a simplified analysis. Moreover, (ii) we propose evaluation metrics allowing for the comparison of general certificates - a certificate is superior to another if it certifies a superset region - with the quantification of each certificate through the volume of the certified region. We introduce ANCER, a practical framework for obtaining anisotropic certificates for a given test set sample via volume maximization. Our empirical results demonstrate that ANCER achieves state-of-the-art $ell_1$ and $ell_2$ certified accuracy on both CIFAR-10 and ImageNet at multiple radii, while certifying substantially larger regions in terms of volume, thus highlighting the benefits of moving away from isotropic analysis. Code used in our experiments is available in https://github.com/MotasemAlfarra/ANCER.



rate research

Read More

114 - Chi Zhang , Xiaoning Ma , Yu Liu 2021
Fundamental machine learning theory shows that different samples contribute unequally both in learning and testing processes. Contemporary studies on DNN imply that such sample difference is rooted on the distribution of intrinsic pattern information, namely sample regularity. Motivated by the recent discovery on network memorization and generalization, we proposed a pair of sample regularity measures for both processes with a formulation-consistent representation. Specifically, cumulative binary training/generalizing loss (CBTL/CBGL), the cumulative number of correct classiffcations of the training/testing sample within training stage, is proposed to quantize the stability in memorization-generalization process; while forgetting/mal-generalizing events, i.e., the mis-classification of previously learned or generalized sample, are utilized to represent the uncertainty of sample regularity with respect to optimization dynamics. Experiments validated the effectiveness and robustness of the proposed approaches for mini-batch SGD optimization. Further applications on training/testing sample selection show the proposed measures sharing the unified computing procedure could benefit for both tasks.
Certifiers for neural networks have made great progress towards provable robustness guarantees against evasion attacks using adversarial examples. However, introducing certifiers into deep learning systems also opens up new attack vectors, which need to be considered before deployment. In this work, we conduct the first systematic analysis of training time attacks against certifiers in practical application pipelines, identifying new threat vectors that can be exploited to degrade the overall system. Using these insights, we design two backdoor attacks against network certifiers, which can drastically reduce certified robustness when the backdoor is activated. For example, adding 1% poisoned data points during training is sufficient to reduce certified robustness by up to 95 percentage points, effectively rendering the certifier useless. We analyze how such novel attacks can compromise the overall systems integrity or availability. Our extensive experiments across multiple datasets, model architectures, and certifiers demonstrate the wide applicability of these attacks. A first investigation into potential defenses shows that current approaches only partially mitigate the issue, highlighting the need for new, more specific solutions.
Automatic 3D neuron reconstruction is critical for analysing the morphology and functionality of neurons in brain circuit activities. However, the performance of existing tracing algorithms is hinged by the low image quality. Recently, a series of deep learning based segmentation methods have been proposed to improve the quality of raw 3D optical image stacks by removing noises and restoring neuronal structures from low-contrast background. Due to the variety of neuron morphology and the lack of large neuron datasets, most of current neuron segmentation models rely on introducing complex and specially-designed submodules to a base architecture with the aim of encoding better feature representations. Though successful, extra burden would be put on computation during inference. Therefore, rather than modifying the base network, we shift our focus to the dataset itself. The encoder-decoder backbone used in most neuron segmentation models attends only intra-volume voxel points to learn structural features of neurons but neglect the shared intrinsic semantic features of voxels belonging to the same category among different volumes, which is also important for expressive representation learning. Hence, to better utilise the scarce dataset, we propose to explicitly exploit such intrinsic features of voxels through a novel voxel-level cross-volume representation learning paradigm on the basis of an encoder-decoder segmentation model. Our method introduces no extra cost during inference. Evaluated on 42 3D neuron images from BigNeuron project, our proposed method is demonstrated to improve the learning ability of the original segmentation model and further enhancing the reconstruction performance.
82 - Yifei Shen , Ye Xue , Jun Zhang 2020
Dictionary learning is a classic representation learning method that has been widely applied in signal processing and data analytics. In this paper, we investigate a family of $ell_p$-norm ($p>2,p in mathbb{N}$) maximization approaches for the complete dictionary learning problem from theoretical and algorithmic aspects. Specifically, we prove that the global maximizers of these formulations are very close to the true dictionary with high probability, even when Gaussian noise is present. Based on the generalized power method (GPM), an efficient algorithm is then developed for the $ell_p$-based formulations. We further show the efficacy of the developed algorithm: for the population GPM algorithm over the sphere constraint, it first quickly enters the neighborhood of a global maximizer, and then converges linearly in this region. Extensive experiments will demonstrate that the $ell_p$-based approaches enjoy a higher computational efficiency and better robustness than conventional approaches and $p=3$ performs the best.
83 - Xinhan Di , Pengqian Yu , Rui Bu 2019
A variety of graph neural networks (GNNs) frameworks for representation learning on graphs have been recently developed. These frameworks rely on aggregation and iteration scheme to learn the representation of nodes. However, information between nodes is inevitably lost in the scheme during learning. In order to reduce the loss, we extend the GNNs frameworks by exploring the aggregation and iteration scheme in the methodology of mutual information. We propose a new approach of enlarging the normal neighborhood in the aggregation of GNNs, which aims at maximizing mutual information. Based on a series of experiments conducted on several benchmark datasets, we show that the proposed approach improves the state-of-the-art performance for four types of graph tasks, including supervised and semi-supervised graph classification, graph link prediction and graph edge generation and classification.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا