Do you want to publish a course? Click here

On the prescription of boundary conditions for nonlocal Poissons and peridynamics models

138   0   0.0 ( 0 )
 Added by Marta D'Elia
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We introduce a technique to automatically convert local boundary conditions into nonlocal volume constraints for nonlocal Poissons and peridynamic models. The proposed strategy is based on the approximation of nonlocal Dirichlet or Neumann data with a local solution obtained by using available boundary, local data. The corresponding nonlocal solution converges quadratically to the local solution as the nonlocal horizon vanishes, making the proposed technique asymptotically compatible. The proposed conversion method does not have any geometry or dimensionality constraints and its computational cost is negligible, compared to the numerical solution of the nonlocal equation. The consistency of the method and its quadratic convergence with respect to the horizon is illustrated by several two-dimensional numerical experiments conducted by meshfree discretization for both the Poissons problem and the linear peridynamic solid model.



rate research

Read More

Partial differential equations (PDEs) are used, with huge success, to model phenomena arising across all scientific and engineering disciplines. However, across an equally wide swath, there exist situations in which PDE models fail to adequately model observed phenomena or are not the best available model for that purpose. On the other hand, in many situations, nonlocal models that account for interaction occurring at a distance have been shown to more faithfully and effectively model observed phenomena that involve possible singularities and other anomalies. In this article, we consider a generic nonlocal model, beginning with a short review of its definition, the properties of its solution, its mathematical analysis, and specific concrete examples. We then provide extensive discussions about numerical methods, including finite element, finite difference, and spectral methods, for determining approximate solutions of the nonlocal models considered. In that discussion, we pay particular attention to a special class of nonlocal models that are the most widely studied in the literature, namely those involving fractional derivatives. The article ends with brief considerations of several modeling and algorithmic extensions which serve to show the wide applicability of nonlocal modeling.
We consider approximating the solution of the Helmholtz exterior Dirichlet problem for a nontrapping obstacle, with boundary data coming from plane-wave incidence, by the solution of the corresponding boundary value problem where the exterior domain is truncated and a local absorbing boundary condition coming from a Pade approximation (of arbitrary order) of the Dirichlet-to-Neumann map is imposed on the artificial boundary (recall that the simplest such boundary condition is the impedance boundary condition). We prove upper- and lower-bounds on the relative error incurred by this approximation, both in the whole domain and in a fixed neighbourhood of the obstacle (i.e. away from the artificial boundary). Our bounds are valid for arbitrarily-high frequency, with the artificial boundary fixed, and show that the relative error is bounded away from zero, independent of the frequency, and regardless of the geometry of the artificial boundary.
163 - Xiaofeng Xu , Lian Zhang , Yin Shi 2021
Modeling the microstructure evolution of a material embedded in a device often involves integral boundary conditions. Here we propose a modified Nitsches method to solve the Poisson equation with an integral boundary condition, which is coupled to phase-field equations of the microstructure evolution of a strongly correlated material undergoing metal-insulator transitions. Our numerical experiments demonstrate that the proposed method achieves optimal convergence rate while the rate of convergence of the conventional Lagrange multiplier method is not optimal. Furthermore, the linear system derived from the modified Nitsches method can be solved by an iterative solver with algebraic multigrid preconditioning. The modified Nitsches method can be applied to other physical boundary conditions mathematically similar to this electric integral boundary condition.
The simulation of long, nonlinear dispersive waves in bounded domains usually requires the use of slip-wall boundary conditions. Boussinesq systems appearing in the literature are generally not well-posed when such boundary conditions are imposed, or if they are well-posed it is very cumbersome to implement the boundary conditions in numerical approximations. In the present paper a new Boussinesq system is proposed for the study of long waves of small amplitude in a basin when slip-wall boundary conditions are required. The new system is derived using asymptotic techniques under the assumption of small bathymetric variations, and a mathematical proof of well-posedness for the new system is developed. The new system is also solved numerically using a Galerkin finite-element method, where the boundary conditions are imposed with the help of Nitsches method. Convergence of the numerical method is analyzed, and precise error estimates are provided. The method is then implemented, and the convergence is verified using numerical experiments. Numerical simulations for solitary waves shoaling on a plane slope are also presented. The results are compared to experimental data, and excellent agreement is found.
82 - Yunyun Ma , Fuming Ma , Yukun Guo 2021
This paper is devoted to the computation of transmission eigenvalues in the inverse acoustic scattering theory. This problem is first reformulated as a two by two boundary system of boundary integral equations. Next, utilizing the Schur complement technique, we develop a Schur complement operator with regularization to obtain a reduced system of boundary integral equations. The Nystr{o}m discretization is then used to obtain an eigenvalue problem for a matrix. We employ the recursive integral method for the numerical computation of the matrix eigenvalue. Numerical results show that the proposed method is efficient and reduces computational costs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا