No Arabic abstract
Automatic segmentation of hepatocellular carcinoma (HCC) in Digital Subtraction Angiography (DSA) videos can assist radiologists in efficient diagnosis of HCC and accurate evaluation of tumors in clinical practice. Few studies have investigated HCC segmentation from DSA videos. It shows great challenging due to motion artifacts in filming, ambiguous boundaries of tumor regions and high similarity in imaging to other anatomical tissues. In this paper, we raise the problem of HCC segmentation in DSA videos, and build our own DSA dataset. We also propose a novel segmentation network called DSA-LTDNet, including a segmentation sub-network, a temporal difference learning (TDL) module and a liver region segmentation (LRS) sub-network for providing additional guidance. DSA-LTDNet is preferable for learning the latent motion information from DSA videos proactively and boosting segmentation performance. All of experiments are conducted on our self-collected dataset. Experimental results show that DSA-LTDNet increases the DICE score by nearly 4% compared to the U-Net baseline.
This work proposes a pipeline to predict treatment response to intra-arterial therapy of patients with Hepatocellular Carcinoma (HCC) for improved therapeutic decision-making. Our graph neural network model seamlessly combines heterogeneous inputs of baseline MR scans, pre-treatment clinical information, and planned treatment characteristics and has been validated on patients with HCC treated by transarterial chemoembolization (TACE). It achieves Accuracy of $0.713 pm 0.075$, F1 of $0.702 pm 0.082$ and AUC of $0.710 pm 0.108$. In addition, the pipeline incorporates uncertainty estimation to select hard cases and most align with the misclassified cases. The proposed pipeline arrives at more informed intra-arterial therapeutic decisions for patients with HCC via improving model accuracy and incorporating uncertainty estimation.
Coronary angiography is an indispensable assistive technique for cardiac interventional surgery. Segmentation and extraction of blood vessels from coronary angiography videos are very essential prerequisites for physicians to locate, assess and diagnose the plaques and stenosis in blood vessels. This article proposes a new video segmentation framework that can extract the clearest and most comprehensive coronary angiography images from a video sequence, thereby helping physicians to better observe the condition of blood vessels. This framework combines a 3D convolutional layer to extract spatial--temporal information from a video sequence and a 2D CE--Net to accomplish the segmentation task of an image sequence. The input is a few continuous frames of angiographic video, and the output is a mask of segmentation result. From the results of segmentation and extraction, we can get good segmentation results despite the poor quality of coronary angiography video sequences.
Optical Coherence Tomography Angiography (OCT-A) is a non-invasive imaging technique, and has been increasingly used to image the retinal vasculature at capillary level resolution. However, automated segmentation of retinal vessels in OCT-A has been under-studied due to various challenges such as low capillary visibility and high vessel complexity, despite its significance in understanding many eye-related diseases. In addition, there is no publicly available OCT-A dataset with manually graded vessels for training and validation. To address these issues, for the first time in the field of retinal image analysis we construct a dedicated Retinal OCT-A SEgmentation dataset (ROSE), which consists of 229 OCT-A images with vessel annotations at either centerline-level or pixel level. This dataset has been released for public access to assist researchers in the community in undertaking research in related topics. Secondly, we propose a novel Split-based Coarse-to-Fine vessel segmentation network (SCF-Net), with the ability to detect thick and thin vessels separately. In the SCF-Net, a split-based coarse segmentation (SCS) module is first introduced to produce a preliminary confidence map of vessels, and a split-based refinement (SRN) module is then used to optimize the shape/contour of the retinal microvasculature. Thirdly, we perform a thorough evaluation of the state-of-the-art vessel segmentation models and our SCF-Net on the proposed ROSE dataset. The experimental results demonstrate that our SCF-Net yields better vessel segmentation performance in OCT-A than both traditional methods and other deep learning methods.
Federated learning (FL) enables collaborative model training while preserving each participants privacy, which is particularly beneficial to the medical field. FedAvg is a standard algorithm that uses fixed weights, often originating from the dataset sizes at each client, to aggregate the distributed learned models on a server during the FL process. However, non-identical data distribution across clients, known as the non-i.i.d problem in FL, could make this assumption for setting fixed aggregation weights sub-optimal. In this work, we design a new data-driven approach, namely Auto-FedAvg, where aggregation weights are dynamically adjusted, depending on data distributions across data silos and the current training progress of the models. We disentangle the parameter set into two parts, local model parameters and global aggregation parameters, and update them iteratively with a communication-efficient algorithm. We first show the validity of our approach by outperforming state-of-the-art FL methods for image recognition on a heterogeneous data split of CIFAR-10. Furthermore, we demonstrate our algorithms effectiveness on two multi-institutional medical image analysis tasks, i.e., COVID-19 lesion segmentation in chest CT and pancreas segmentation in abdominal CT.
Automated vascular segmentation on optical coherence tomography angiography (OCTA) is important for the quantitative analyses of retinal microvasculature in neuroretinal and systemic diseases. Despite recent improvements, artifacts continue to pose challenges in segmentation. Our study focused on removing the speckle noise artifact from OCTA images when performing segmentation. Speckle noise is common in OCTA and is particularly prominent over large non-perfusion areas. It may interfere with the proper assessment of retinal vasculature. In this study, we proposed a novel Supervision Vessel Segmentation network (SVS-net) to detect vessels of different sizes. The SVS-net includes a new attention-based module to describe vessel positions and facilitate the understanding of the network learning process. The model is efficient and explainable and could be utilized to reduce the need for manual labeling. Our SVS-net had better performance in accuracy, recall, F1 score, and Kappa score when compared to other well recognized models.