Do you want to publish a course? Click here

Hierarchical Semantic Segmentation using Psychometric Learning

88   0   0.0 ( 0 )
 Added by Lu Yin
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Assigning meaning to parts of image data is the goal of semantic image segmentation. Machine learning methods, specifically supervised learning is commonly used in a variety of tasks formulated as semantic segmentation. One of the major challenges in the supervised learning approaches is expressing and collecting the rich knowledge that experts have with respect to the meaning present in the image data. Towards this, typically a fixed set of labels is specified and experts are tasked with annotating the pixels, patches or segments in the images with the given labels. In general, however, the set of classes does not fully capture the rich semantic information present in the images. For example, in medical imaging such as histology images, the different parts of cells could be grouped and sub-grouped based on the expertise of the pathologist. To achieve such a precise semantic representation of the concepts in the image, we need access to the full depth of knowledge of the annotator. In this work, we develop a novel approach to collect segmentation annotations from experts based on psychometric testing. Our method consists of the psychometric testing procedure, active query selection, query enhancement, and a deep metric learning model to achieve a patch-level image embedding that allows for semantic segmentation of images. We show the merits of our method with evaluation on the synthetically generated image, aerial image and histology image.



rate research

Read More

Collecting labeled data for the task of semantic segmentation is expensive and time-consuming, as it requires dense pixel-level annotations. While recent Convolutional Neural Network (CNN) based semantic segmentation approaches have achieved impressive results by using large amounts of labeled training data, their performance drops significantly as the amount of labeled data decreases. This happens because deep CNNs trained with the de facto cross-entropy loss can easily overfit to small amounts of labeled data. To address this issue, we propose a simple and effective contrastive learning-based training strategy in which we first pretrain the network using a pixel-wise, label-based contrastive loss, and then fine-tune it using the cross-entropy loss. This approach increases intra-class compactness and inter-class separability, thereby resulting in a better pixel classifier. We demonstrate the effectiveness of the proposed training strategy using the Cityscapes and PASCAL VOC 2012 segmentation datasets. Our results show that pretraining with the proposed contrastive loss results in large performance gains (more than 20% absolute improvement in some settings) when the amount of labeled data is limited. In many settings, the proposed contrastive pretraining strategy, which does not use any additional data, is able to match or outperform the widely-used ImageNet pretraining strategy that uses more than a million additional labeled images.
Contrastive learning has shown superior performance in embedding global and spatial invariant features in computer vision (e.g., image classification). However, its overall success of embedding local and spatial variant features is still limited, especially for semantic segmentation. In a per-pixel prediction task, more than one label can exist in a single image for segmentation (e.g., an image contains both cat, dog, and grass), thereby it is difficult to define positive or negative pairs in a canonical contrastive learning setting. In this paper, we propose an attention-guided supervised contrastive learning approach to highlight a single semantic object every time as the target. With our design, the same image can be embedded to different semantic clusters with semantic attention (i.e., coerce semantic masks) as an additional input channel. To achieve such attention, a novel two-stage training strategy is presented. We evaluate the proposed method on multi-organ medical image segmentation task, as our major task, with both in-house data and BTCV 2015 datasets. Comparing with the supervised and semi-supervised training state-of-the-art in the backbone of ResNet-50, our proposed pipeline yields substantial improvement of 5.53% and 6.09% in Dice score for both medical image segmentation cohorts respectively. The performance of the proposed method on natural images is assessed via PASCAL VOC 2012 dataset, and achieves 2.75% substantial improvement.
Image semantic segmentation is more and more being of interest for computer vision and machine learning researchers. Many applications on the rise need accurate and efficient segmentation mechanisms: autonomous driving, indoor navigation, and even virtual or augmented reality systems to name a few. This demand coincides with the rise of deep learning approaches in almost every field or application target related to computer vision, including semantic segmentation or scene understanding. This paper provides a review on deep learning methods for semantic segmentation applied to various application areas. Firstly, we describe the terminology of this field as well as mandatory background concepts. Next, the main datasets and challenges are exposed to help researchers decide which are the ones that best suit their needs and their targets. Then, existing methods are reviewed, highlighting their contributions and their significance in the field. Finally, quantitative results are given for the described methods and the datasets in which they were evaluated, following up with a discussion of the results. At last, we point out a set of promising future works and draw our own conclusions about the state of the art of semantic segmentation using deep learning techniques.
Knowledge present in a domain is well expressed as relationships between corresponding concepts. For example, in zoology, animal species form complex hierarchies; in genomics, the different (parts of) molecules are organized in groups and subgroups based on their functions; plants, molecules, and astronomical objects all form complex taxonomies. Nevertheless, when applying supervised machine learning (ML) in such domains, we commonly reduce the complex and rich knowledge to a fixed set of labels, and induce a model shows good generalization performance with respect to these labels. The main reason for such a reductionist approach is the difficulty in eliciting the domain knowledge from the experts. Developing a label structure with sufficient fidelity and providing comprehensive multi-label annotation can be exceedingly labor-intensive in many real-world applications. In this paper, we provide a method for efficient hierarchical knowledge elicitation (HKE) from experts working with high-dimensional data such as images or videos. Our method is based on psychometric testing and active deep metric learning. The developed models embed the high-dimensional data in a metric space where distances are semantically meaningful, and the data can be organized in a hierarchical structure. We provide empirical evidence with a series of experiments on a synthetically generated dataset of simple shapes, and Cifar 10 and Fashion-MNIST benchmarks that our method is indeed successful in uncovering hierarchical structures.
297 - Dongxu Li , Chenchen Xu , Xin Yu 2020
Sign language translation (SLT) aims to interpret sign video sequences into text-based natural language sentences. Sign videos consist of continuous sequences of sign gestures with no clear boundaries in between. Existing SLT models usually represent sign visual features in a frame-wise manner so as to avoid needing to explicitly segmenting the videos into isolated signs. However, these methods neglect the temporal information of signs and lead to substantial ambiguity in translation. In this paper, we explore the temporal semantic structures of signvideos to learn more discriminative features. To this end, we first present a novel sign video segment representation which takes into account multiple temporal granularities, thus alleviating the need for accurate video segmentation. Taking advantage of the proposed segment representation, we develop a novel hierarchical sign video feature learning method via a temporal semantic pyramid network, called TSPNet. Specifically, TSPNet introduces an inter-scale attention to evaluate and enhance local semantic consistency of sign segments and an intra-scale attention to resolve semantic ambiguity by using non-local video context. Experiments show that our TSPNet outperforms the state-of-the-art with significant improvements on the BLEU score (from 9.58 to 13.41) and ROUGE score (from 31.80 to 34.96)on the largest commonly-used SLT dataset. Our implementation is available at https://github.com/verashira/TSPNet.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا