No Arabic abstract
The hidden subgroup problem ($mathsf{HSP}$) has been attracting much attention in quantum computing, since several well-known quantum algorithms including Shor algorithm can be described in a uniform framework as quantum methods to address different instances of it. One of the central issues about $mathsf{HSP}$ is to characterize its quantum/classical complexity. For example, from the viewpoint of learning theory, sample complexity is a crucial concept. However, while the quantum sample complexity of the problem has been studied, a full characterization of the classical sample complexity of $mathsf{HSP}$ seems to be absent, which will thus be the topic in this paper. $mathsf{HSP}$ over a finite group is defined as follows: For a finite group $G$ and a finite set $V$, given a function $f:G to V$ and the promise that for any $x, y in G, f(x) = f(xy)$ iff $y in H$ for a subgroup $H in mathcal{H}$, where $mathcal{H}$ is a set of candidate subgroups of $G$, the goal is to identify $H$. Our contributions are as follows: For $mathsf{HSP}$, we give the upper and lower bounds on the sample complexity of $mathsf{HSP}$. Furthermore, we have applied the result to obtain the sample complexity of some concrete instances of hidden subgroup problem. Particularly, we discuss generalized Simons problem ($mathsf{GSP}$), a special case of $mathsf{HSP}$, and show that the sample complexity of $mathsf{GSP}$ is $Thetaleft(maxleft{k,sqrt{kcdot p^{n-k}}right}right)$. Thus we obtain a complete characterization of the sample complexity of $mathsf{GSP}$.
Set disjointness is a central problem in communication complexity. Here Alice and Bob each receive a subset of an n-element universe, and they need to decide whether their inputs intersect or not. The communication complexity of this problem is relatively well understood, and in most models, including $-$ most famously $-$ interactive randomised communication with bounded error, the problem requires much communication. In this work we were looking for a variation of the set disjointness problem, as natural and simple as possible, for which the known lower bound methods would fail, and thus a new approach would be required in order to understand its complexity. The problem that we have found is a relational one: each player receives a subset as input, and the goal is to find an element that belongs to both players. We call it inevitable intersection.
A matching is a set of edges in a graph with no common endpoint. A matching $M$ is called acyclic if the induced subgraph on the endpoints of the edges in $M$ is acyclic. Given a graph $G$ and an integer $k$, Acyclic Matching Problem seeks for an acyclic matching of size $k$ in $G$. The problem is known to be NP-complete. In this paper, we investigate the complexity of the problem in different aspects. First, we prove that the problem remains NP-complete for the class of planar bipartite graphs with maximum degree three and girth of arbitrary large. Also, the problem remains NP-complete for the class of planar line graphs with maximum degree four. Moreover, we study the parameterized complexity of the problem. In particular, we prove that the problem is W[1]-hard on bipartite graphs with respect to the parameter $k$. On the other hand, the problem is fixed parameter tractable with respect to $k$, for line graphs, $C_4$-free graphs and every proper minor-closed class of graphs (including bounded tree-width and planar graphs).
We consider the distinct elements problem, where the goal is to estimate the number of distinct colors in an urn containing $ k $ balls based on $n$ samples drawn with replacements. Based on discrete polynomial approximation and interpolation, we propose an estimator with additive error guarantee that achieves the optimal sample complexity within $O(loglog k)$ factors, and in fact within constant factors for most cases. The estimator can be computed in $O(n)$ time for an accurate estimation. The result also applies to sampling without replacement provided the sample size is a vanishing fraction of the urn size. One of the key auxiliary results is a sharp bound on the minimum singular values of a real rectangular Vandermonde matrix, which might be of independent interest.
In this paper, we study the system identification problem for sparse linear time-invariant systems. We propose a sparsity promoting block-regularized estimator to identify the dynamics of the system with only a limited number of input-state data samples. We characterize the properties of this estimator under high-dimensional scaling, where the growth rate of the system dimension is comparable to or even faster than that of the number of available sample trajectories. In particular, using contemporary results on high-dimensional statistics, we show that the proposed estimator results in a small element-wise error, provided that the number of sample trajectories is above a threshold. This threshold depends polynomially on the size of each block and the number of nonzero elements at different rows of input and state matrices, but only logarithmically on the system dimension. A by-product of this result is that the number of sample trajectories required for sparse system identification is significantly smaller than the dimension of the system. Furthermore, we show that, unlike the recently celebrated least-squares estimators for system identification problems, the method developed in this work is capable of textit{exact recovery} of the underlying sparsity structure of the system with the aforementioned number of data samples. Extensive case studies on synthetically generated systems, physical mass-spring networks, and multi-agent systems are offered to demonstrate the effectiveness of the proposed method.