Do you want to publish a course? Click here

Network meta-analysis and random walks

368   0   0.0 ( 0 )
 Added by Annabel Davies
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Network meta-analysis (NMA) is a central tool for evidence synthesis in clinical research. The results of an NMA depend critically on the quality of evidence being pooled. In assessing the validity of an NMA, it is therefore important to know the proportion contributions of each direct treatment comparison to each network treatment effect. The construction of proportion contributions is based on the observation that each row of the hat matrix represents a so-called evidence flow network for each treatment comparison. However, the existing algorithm used to calculate these values is associated with ambiguity according to the selection of paths. In this work we present a novel analogy between NMA and random walks. We use this analogy to derive closed-form expressions for the proportion contributions. A random walk on a graph is a stochastic process that describes a succession of random hops between vertices which are connected by an edge. The weight of an edge relates to the probability that the walker moves along that edge. We use the graph representation of NMA to construct the transition matrix for a random walk on the network of evidence. We show that the net number of times a walker crosses each edge of the network is related to the evidence flow network. By then defining a random walk on the directed evidence flow network, we derive analytically the matrix of proportion contributions. The random-walk approach, in addition to being computationally more efficient, has none of the associated ambiguity of the existing algorithm.



rate research

Read More

Sampling a network is an important prerequisite for unsupervised network embedding. Further, random walk has widely been used for sampling in previous studies. Since random walk based sampling tends to traverse adjacent neighbors, it may not be suitable for heterogeneous network because in heterogeneous networks two adjacent nodes often belong to different types. Therefore, this paper proposes a K-hop random walk based sampling approach which includes a node in the sample list only if it is separated by K hops from the source node. We exploit the samples generated using K-hop random walker for network embedding using skip-gram model (word2vec). Thereafter, the performance of network embedding is evaluated on co-authorship prediction task in heterogeneous DBLP network. We compare the efficacy of network embedding exploiting proposed sampling approach with recently proposed best performing network embedding models namely, Metapath2vec and Node2vec. It is evident that the proposed sampling approach yields better quality of embeddings and out-performs baselines in majority of the cases.
We establish a relationship between the Small-World behavior found in complex networks and a family of Random Walks trajectories using, as a linking bridge, a maze iconography. Simple methods to generate mazes using Random Walks are discussed along with related issues and it is explained how to interpret mazes as graphs and loops as shortcuts. Small-World behavior was found to be non-logarithmic but power-law in this model, we discuss the reason for this peculiar scaling
84 - Miquel Montero 2016
Quantum walks and random walks bear similarities and divergences. One of the most remarkable disparities affects the probability of finding the particle at a given location: typically, almost a flat function in the first case and a bell-shaped one in the second case. Here I show how one can impose any desired stochastic behavior (compatible with the continuity equation for the probability function) on both systems by the appropriate choice of time- and site-dependent coins. This implies, in particular, that one can devise quantum walks that show diffusive spreading without loosing coherence, as well as random walks that exhibit the characteristic fast propagation of a quantum particle driven by a Hadamard coin.
A vast variety of real-life networks display the ubiquitous presence of scale-free phenomenon and small-world effect, both of which play a significant role in the dynamical processes running on networks. Although various dynamical processes have been investigated in scale-free small-world networks, analytical research about random walks on such networks is much less. In this paper, we will study analytically the scaling of the mean first-passage time (MFPT) for random walks on scale-free small-world networks. To this end, we first map the classical Koch fractal to a network, called Koch network. According to this proposed mapping, we present an iterative algorithm for generating the Koch network, based on which we derive closed-form expressions for the relevant topological features, such as degree distribution, clustering coefficient, average path length, and degree correlations. The obtained solutions show that the Koch network exhibits scale-free behavior and small-world effect. Then, we investigate the standard random walks and trapping issue on the Koch network. Through the recurrence relations derived from the structure of the Koch network, we obtain the exact scaling for the MFPT. We show that in the infinite network order limit, the MFPT grows linearly with the number of all nodes in the network. The obtained analytical results are corroborated by direct extensive numerical calculations. In addition, we also determine the scaling efficiency exponents characterizing random walks on the Koch network.
Random walks constitute a fundamental mechanism for many dynamics taking place on complex networks. Besides, as a more realistic description of our society, multiplex networks have been receiving a growing interest, as well as the dynamical processes that occur on top of them. Here, inspired by one specific model of random walks that seems to be ubiquitous across many scientific fields, the Levy flight, we study a new navigation strategy on top of multiplex networks. Capitalizing on spectral graph and stochastic matrix theories, we derive analytical expressions for the mean first passage time and the average time to reach a node on these networks. Moreover, we also explore the efficiency of Levy random walks, which we found to be very different as compared to the single layer scenario, accounting for the structure and dynamics inherent to the multiplex network. Finally, by comparing with some other important random walk processes defined on multiplex networks, we find that in some region of the parameters, a Levy random walk is the most efficient strategy. Our results give us a deeper understanding of Levy random walks and show the importance of considering the topological structure of multiplex networks when trying to find efficient navigation strategies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا