No Arabic abstract
Drought is a serious natural disaster that has a long duration and a wide range of influence. To decrease the drought-caused losses, drought prediction is the basis of making the corresponding drought prevention and disaster reduction measures. While this problem has been studied in the literature, it remains unknown whether drought can be precisely predicted or not with machine learning models using weather data. To answer this question, a real-world public dataset is leveraged in this study and different drought levels are predicted using the last 90 days of 18 meteorological indicators as the predictors. In a comprehensive approach, 16 machine learning models and 16 deep learning models are evaluated and compared. The results show no single model can achieve the best performance for all evaluation metrics simultaneously, which indicates the drought prediction problem is still challenging. As benchmarks for further studies, the code and results are publicly available in a Github repository.
Time series prediction with neural networks has been the focus of much research in the past few decades. Given the recent deep learning revolution, there has been much attention in using deep learning models for time series prediction, and hence it is important to evaluate their strengths and weaknesses. In this paper, we present an evaluation study that compares the performance of deep learning models for multi-step ahead time series prediction. The deep learning methods comprise simple recurrent neural networks, long short-term memory (LSTM) networks, bidirectional LSTM networks, encoder-decoder LSTM networks, and convolutional neural networks. We provide a further comparison with simple neural networks that use stochastic gradient descent and adaptive moment estimation (Adam) for training. We focus on univariate time series for multi-step-ahead prediction from benchmark time-series datasets and provide a further comparison of the results with related methods from the literature. The results show that the bidirectional and encoder-decoder LSTM network provides the best performance in accuracy for the given time series problems.
Incremental gradient (IG) methods, such as stochastic gradient descent and its variants are commonly used for large scale optimization in machine learning. Despite the sustained effort to make IG methods more data-efficient, it remains an open question how to select a training data subset that can theoretically and practically perform on par with the full dataset. Here we develop CRAIG, a method to select a weighted subset (or coreset) of training data that closely estimates the full gradient by maximizing a submodular function. We prove that applying IG to this subset is guaranteed to converge to the (near)optimal solution with the same convergence rate as that of IG for convex optimization. As a result, CRAIG achieves a speedup that is inversely proportional to the size of the subset. To our knowledge, this is the first rigorous method for data-efficient training of general machine learning models. Our extensive set of experiments show that CRAIG, while achieving practically the same solution, speeds up various IG methods by up to 6x for logistic regression and 3x for training deep neural networks.
Modeling and simulating a power distribution network (PDN) for printed circuit boards (PCBs) with irregular board shapes and multi-layer stackup is computationally inefficient using full-wave simulations. This paper presents a new concept of using deep learning for PDN impedance prediction. A boundary element method (BEM) is applied to efficiently calculate the impedance for arbitrary board shape and stackup. Then over one million boards with different shapes, stackup, IC location, and decap placement are randomly generated to train a deep neural network (DNN). The trained DNN can predict the impedance accurately for new board configurations that have not been used for training. The consumed time using the trained DNN is only 0.1 seconds, which is over 100 times faster than the BEM method and 5000 times faster than full-wave simulations.
We predict restaurant ratings from Yelp reviews based on Yelp Open Dataset. Data distribution is presented, and one balanced training dataset is built. Two vectorizers are experimented for feature engineering. Four machine learning models including Naive Bayes, Logistic Regression, Random Forest, and Linear Support Vector Machine are implemented. Four transformer-based models containing BERT, DistilBERT, RoBERTa, and XLNet are also applied. Accuracy, weighted F1 score, and confusion matrix are used for model evaluation. XLNet achieves 70% accuracy for 5-star classification compared with Logistic Regression with 64% accuracy.
Uncertainty quantification in Artificial Intelligence (AI)-based predictions of material properties is of immense importance for the success and reliability of AI applications in material science. While confidence intervals are commonly reported for machine learning (ML) models, prediction intervals, i.e., the evaluation of the uncertainty on each prediction, are seldomly available. In this work we compare 3 different approaches to obtain such individual uncertainty, testing them on 12 ML-physical properties. Specifically, we investigated using the Quantile loss function, machine learning the prediction intervals directly and using Gaussian Processes. We identify each approachs advantages and disadvantages and end up slightly favoring the modeling of the individual uncertainties directly, as it is the easiest to fit and, in most cases, minimizes over-and under-estimation of the predicted errors. All data for training and testing were taken from the publicly available JARVIS-DFT database, and the codes developed for computing the prediction intervals are available through JARVIS-Tools.