No Arabic abstract
Disformal transformation provides a map relating different scalar-tensor and vector-tensor theories and gives access to a powerful solution-generating method in modified gravity. In view of the vast family of new solutions one can achieve, it is crucial to design suitable tools to guide their construction. In this work, we address this question by revisiting the Petrov classification of disformally constructed solutions in modified gravity theories. We provide close formulas which relate the principal null directions as well as the Weyl scalars before and after the disformal transformation. These formulas allow one to capture if and how the Petrov type of a given seed geometry changes under a disformal transformation. Finally, we apply our general setup to three relevant disformally constructed solutions for which the seeds are respectively homogeneous and isotropic, static spherically symmetric and stationary axisymmetric. For the first two cases, we show that the Petrov type O and Petrov type D remain unchanged after a disformal transformation while we show that disformed Kerr black hole is no longer of type D but of general Petrov type I. The results presented in this work should serve as a new toolkit when constructing and comparing new disformal solutions in modified gravity.
The extended scalar-tensor and vector-tensor theories admit black hole solutions with the nontrivial profiles of the scalar and vector fields, respectively. The disformal transformation maps a solution in a class of the scalar-tensor or vector-tensor theories to that in another class, and hence it can be a useful tool to construct a new nontrivial solution from the known one. First, we investigate how the stationary and axisymmetric solutions in the vector-tensor theories without and with the $U(1)$ gauge symmetry are disformally transformed. We start from a stationary and axisymmetric solution satisfying the circularity conditions, and show that in both the cases the metric of the disformed solution in general does not satisfy the circularity conditions. Using the fact that a solution in a class of the vector-tensor theories with the vanishing field strength is mapped to that in a class of the shift-symmetric scalar-tensor theories, we derive the disformed stationary and axisymmetric solutions in a class of these theories, and show that the metric of the disformed solutions does not satisfy the circularity conditions if the scalar field depends on the time or azimuthal coordinate. We also confirm that in the scalar-tensor theories without the shift symmetry, the disformed stationary and axisymmetric solutions satisfy the circularity conditions. Second, we investigate the disformal transformations of the stationary and axisymmetric black hole solutions in the generalized Proca theory with the nonminimal coupling to the Einstein tensor, the shift-symmetric scalar-tensor theory with the nonminimal derivative coupling to the Einstein tensor, the Einstein-Maxwell theory, and the Einstein-conformally coupled scalar field theory. We show that the disformal transformations modify the causal properties of the spacetime.
A new generalization of the Hawking-Hayward quasilocal energy to scalar-tensor gravity is proposed without assuming symmetries, asymptotic flatness, or special spacetime metrics. The procedure followed is simple but powerful and consists of writing the scalar-tensor field equations as effective Einstein equations and then applying the standard definition of quasilocal mass.
We analytically derive a class of non-singular, static and spherically symmetric topological black hole metrics inF(R)-gravity. These have not a de Sitter core at their centre, as most model in standard General Relativity. We study the geometric properties and the motion of test particles around these objects. Since they have two horizons, the inner being of Cauchy type, we focus on the problem of mass inflation and show that it occurs except when some extremal conditions are met.
In this article, the bulk viscosity is introduced in a modified gravity model. The gravitational action has a general $f(R,T)$ form, where $R$ and $ T $ are the curvature scalar and the trace of energy momentum tensor respectively. An effective equation of state (EoS) has been investigated in the cosmological evolution with bulk viscosity. In the present scenario, the Hubble parameter which has a scaling relation with the redshift can be obtained generically. The role of deceleration parameter $q$ and equation of state parameter $omega $ is discussed to explain the late-time accelerating expansion of the universe. The statefinder parameters and Om diagnostic analysis are discussed for our obtained model to distinguish from other dark energy models together with the analysis of energy conditions and velocity of sound for the model. We have also numerically investigated the model by detailed maximum likelihood analysis of $580$ Type Ia supernovae from Union $ 2.1$ compilation datasets and updated $57$ Hubble datasets ($31$ data points from differential age method and $26$ points from BAO and other methods). It is with efforts found that the present model is in good agreement with observations.
The one-loop partition function of the $f(R,R_{mu u}R^{mu u})$ gravity theory is obtained around AdS$_4$ background. After suitable choice of the gauge condition and computation of the ghost determinant, we obtain the one-loop partition function of the theory. The traced heat kernel over the thermal quotient of AdS$_4$ space is also computed and the thermal partition function is obtained for this theory. We have then consider quantum corrections to the thermodynamical quantities in some special cases.